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Abstract

Polymer nanostructured materials for drug delivery applications have witnessed tremen-

dous progress in recent years due to their vast potential. One-end-grafted polymers

can form grafted micelles with specific mechanical properties. Biological conditions

can alter these properties resulting in the protection or release of drugs. Charged sur-

factants can also form micelles in an aqueous solution, which can also be manipulated

through special conditions. On the micellar surface, self-organized polyelectrolytes

can be stimulated to extend their attached ligands and thus increase the probability

of binding to targeted receptors. This thesis focuses on modeling polymer-based drug

delivery systems by studying the physical interactions between polymer segments un-

der several biological conditions.

Temperature, pH, salt concentrations, electrostatic charges and other biological

conditions have been used as stimuli for polymer-based drug delivery applications.

Different stimuli trigger multiple physical interactions (e.g. steric, van der Waals and

electrostatic interactions), which are coupled with each other. The complex coupling

between the physical interactions is studied by modeling thermodynamic systems

composed of grafted polymers in a biological solution.

A cubic lattice geometry has been used for modeling all studied thermodynamic

systems. For each model, polymer self-organization is determined by generalizing

a molecular theory based on a mean-field approach. These molecular theories de-

termine the molecular organizations and the polymers aggregations in one or three-

dimensional (1D or 3D) calculations. The theories are shown to form a design guide-

line for the creation of therapeutic polymer-based drug delivery devices.
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Chapter 1

Introduction

1.1 Polymers

A polymer or a macromolecule is a large size molecule that can be described as a

chain of covalently bonded elementary units called monomers. These monomers can

be joined in a simple linear skeletal structure or a more complex non-linear skeletal

structure (see Figure 1.1). For example, Cyclic polymers have no ends, Branched

polymers have side chains, and Network polymers have three-dimensional structures

where each chain is connected to the others by an arrangement of junction points. In

this study, we focus on modeling polymers with linear skeletal structures only.

Figure 1.1: The linear and non-linear skeletal struc-
tures of polymers.

Polymers are also characterized according to their internal structure. Homopoly-

1
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mers have a structure represented by repetition of a single monomer A. Copolymers

are macromolecules that contain two different repeated units (A and B). Copolymers

can be further categorized into three combinational forms: textitalternating, random,

or block (see Figure 1.2). Differences in the arrangement of the bonded units give rise

to major differences in properties of the copolymers. The properties of polymers can

thus be manipulated for specific applications [13].

Figure 1.2: Characterizing polymers according to
their internal structure.

A single polymer can adopt many different configurations. Each polymer config-

uration represents a spatial structure determined by the relative location of all the

monomer units. Which configuration the polymer adopts depends on three char-

acteristics: flexibility of the chain, interactions between the polymer segments on

the chain, and interaction between the chain and the surroundings including other

polymer segments.

The flexibility of a polymer is determined by the nature of its conformations,

or to the relatively unhindered rotations around carbon-carbon single bonds in the

polymer backbone. The ease of rotation is described by the energy spectrum of the

polymer. Each configuration has a specific potential energy as shown on the energy

spectrum graph for polyethylene (Figure 1.3).

2
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Figure 1.3: The energy spectrum of the three principle confor-
mations.

There are three minima corresponding to three principle conformations: trans,

gauche+, and gauche− 1. ∆ε represents the energy difference between the minima.

∆E represents the energy barrier that separates the minima. When the energy dif-

ference between minima, ∆ε, is smaller than the thermal energy, KBT , the chain is

considered to be highly flexible [16] (meaning that there is not a preference confor-

mation). When ∆ε > KBT , the trans state will be energetically more favorable and

the chain will be rigid. For a chain with total length L, and degree of polymerization

N 2, the flexibility parameter x is given by:

x = lp
L
∼=

1
N

exp( ∆ε
KBT

) 3

where lp is called the persistence length. The persistence length is a characteristic

length quantifying the chain flexibility.

1Trans state of the torsion angle φi = 0◦ represents the lowest energy state between three
neighboring carbon atoms. Gauche (±) states correspond to the torsion angle φi = ±120◦ [44].

2The degree of polymerization is the number of monomer units on a polymer chain.

3Notice the usage of the following signs: 1- (=) sign indicates exact equality including all nu-
merical coefficients. 2- (∼=) sign states only a scaling law with all dimensional factors, and ignoring
numerical coefficients. 3- (∼) sign stresses only the power law without taking into account the
dimensional factors or the numerical coefficients.

3
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There can be either attractive or repulsive interactions between the polymer seg-

ments from the same chain, different chains, and the surrounding molecules, such as

solvent molecules. These interactions, such as electrostatic, van der Waals, and steric

interactions, affect the polymer configurations. 1 We will use statistical mechanics

to predict these configurations.

1.2 Polymer’s conformational structure

The total length of an unfolded polymer chain with a polymerization number N , is

L = Nb, where b is the length of the chemical bond between two monomers and

is independent of the chemical structure of the solvent [13]. The average distance

between two ends of a polymer chain over all the possible conformational states of that

polymer is called the root-mean-squared-end-to-end distance of a polymer chain R =√〈
R2
〉

=
√
〈R ·R〉, where R is the end-to-end vector. The value of this parameter

depends on the configurational structure of the chain, where it increases as the chain

stretches and decreases when the chain is compressed. Chain configurations depend

on the interactions between the neighboring monomers, short-ranged interferences,

and monomers separated by large distances, long-ranged interferences (see Figure

1.4).

Numerous interferences affect the polymer configurations and accordingly its self-

energy. In a simple statistical model, the long-ranged interactions between the far

apart monomers in the chain are ignored even if they approach each other in space.

This is called an Ideal Chain, and can be modeled via the Random Walk lattice

model. In the Random Walk lattice model the next step may proceed toward any of

the nearest neighbor lattice sites with equal statistical probabilities (Figure 1.5 (A)).

The mean-squared-end-to-end distance of an Ideal chain is linearly related to its

polymerization number N . The universal relation for a Random Walk on a periodic

1We will spend some time talking about each of these interactions in details.

4



www.manaraa.com

Figure 1.4: Linear skeletal model of a poly-
mer shows two different kinds of interactions
between its monomers (R represents the end-
to-end distance vector).

lattice model that describes ideal chains is:

〈
R2
〉
∼ a2N

The Kuhn Length (a) is the effective length of the freely jointed bonds on a

polymer chain. It is a constant that depends on the chemical structure of both the

polymer and the solvent.

Real chains interact via long and short-ranged interferences. Real chain models

consider direct monomer-monomer interactions between neighboring monomers and

monomers that are far apart on the polymer backbone. These models also take into

account the interaction with the surrounding molecules, such as solvent molecules.

Real chains in a good solvent have the same universal features as Self-avoiding Walks

(SAWs) in a lattice. The SAW is a random walk model that never visits the same site

more than once (see Figure 1.5(B)). Thus, the statistical probabilities are not equal

for each step. The mean-squared-end-to-end distance for a real chain is proportional

5
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Figure 1.5: Statistical models for Random walk and Self-avoiding
random walk. The two models represent 27 steps, and the red lines
show the end-to-end distance, which looks shorter in the random walk
than the self-avoiding walk, as the statistical calculations predict.

to the number of monomers in the chain via the following relation:

〈
R2
〉
∼ a2N ν (1.1)

Flory computed a universal value of the exponent ν (see Appendix A), which is

called the excluded volume parameter. The value of this parameter depends on the

number of dimensions at which we study the SAW (ν3 ∼= 6/5, ν2 ∼= 3/2, ν1 ∼= 2) [16].

In Equation 1.1, (a) depends on both the chemical structure of the polymer and the

solvent. By using the SAW technique, Domb [12] was able to calculate the prefactor

for this relation (Constant ·a). He called it A(N), where A(N) = <R2>
N6/5 , and he found

that for a three-dimensional simple cubic lattice system A(N > 10) = 1.061097.

Dumb’s system only characterizes the case of a perfectly good solvent. Thus, for the

same system and different solvent quality this prefactor would differ to reflect the

appropriate interactions for a polymer mixture. Hence, the SAW model has been

used to describe real chain behavior.

6
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1.3 Polymer Solutions

Polymer mixtures have several characteristic properties that make them unique among

fluid mixtures. These properties can be broken up into three categories. First, poly-

mers tend not to mix with different polymers, but instead blended polymers typically

separate to form, either little spherical bulbs, layer-by-layer structure (LBL) or un-

defined shapes (see Figure 1.6).

Figure 1.6: Different polymer blends provide singular phase morphologies.

Second, a polymer molecule is typically much larger than a solvent molecule.

This causes non-idealities of polymer solutions. To overcome the non-ideality prob-

lem, Flory and Huggins assumed that each polymer segment (monomer) has the

same size as a solvent molecule. Thus, they treated each monomer equivalent to a

solvent molecule to calculate the entropy of a polymer solution. Third, due to the

conformational degree of freedom of a polymer molecule, liquid polymers, polymer

solutions, and solid polymers are rubbery in nature. They are viscous and have an

elastic behavior, so they are viscoelastic materials. All the properties of polymer

solutions are produced due to the short-ranged and the long-ranged interactions and

the interactions between monomers and the surrounding molecules.

A real polymer chain in a solvent, behaves as an ideal chain at a temperature

that is called the theta temperature (Tθ). At the theta temperature the attractive
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interactions between polymer segments compensate for the repulsive interactions due

to the excluded volume effect, and lead to the chain acting if it was an ideal chain.

At any temperature below Tθ, polymer segments attract each other to form collapsed

conformations, and the solvent at this temperature is called a poor solvent. Vise

versa, polymers at temperatures higher than Tθ show more extended conformations

due to the repulsive interaction between the polymer segments, and the solvent at this

temperature is known as a good solvent. Figure 1.7 shows the effect of the temperature

on the behavior of a real chain and how the θ temperature leads to an ideal chain

behavior.

Figure 1.7: The effect of Tθ on polymers conformational struc-
ture.

1.3.1 Polyelectrolytes’ Solutions

Polyelectrolytes are macromolecules that are capable of dissolving or reacting in a

polar solvent depending on their chemical groups, to generate charged species. Poly-

anions with acidic groups along their backbone are able to dissolve to release free

counterions, leaving bound residues with negatively charged species [13]. In contrast,

Poly-cations with basic groups along their backbone are able to react with free solvent

ions, generating bound residues with positively charged species. For example, each

monomer in Poly(acrylic acid) (PAA) has a COOH group that gives rise to acidic

8
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functionality. In a polar solvent, usually water at neutral pH, COOH groups dissociate

to release hydrogen ions, H+, leaving negatively charged residues along the chain

backbone (COO). Figure (1.8) represents polybase (Poly-cation), such as polyamine

polymer, that is able to react with hydrogen ions of water solution at a wide range

of pH, leaving charged monomers a long the polymer chain.

Figure 1.8: Poly-cation (polybase) reaction in an aqueous solution.

Polyelectrolytes can be classified as weak and strong (also known as quenched)

according to the concentration of the dissociated groups. If the number of the

dissociated-groups in a polyelectrolyte is fixed under different environmental con-

ditions, such as salt concentration and pH, this polyelectrolyte is called a quenched

polyelectrolyte. However, in weak polyelectrolytes, salt concentration and pH are

used to control the ionic properties of the chain through the amount of dissociation.

Weak polyelectrolytes can be synthesized carefully to control their functionality at

the desired location, which makes them a great component for synthesizing targeted

drug delivery device.

A polymer’s conformational structure in a solution is controlled by several in-

teractions in the system. In addition to the polymer architecture and the solvent

affinity, electrostatic interactions play very important roles in polyelectrolyte’s con-
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formational structure. Polyelectrolytes tend to swell due to the repulsive interaction

between their charged bound residues. In the case of the weak polyelectrolytes, one

can generate more collapsed conformations by increasing salt concentration. In this

environment, salt ions screen the charged polymer segments giving rise to more col-

lapsed conformations. Moreover, changing the salt concentration or the pH in the

system can affect the dissociation, and therefore change the fractional charge of the

polyelectrolyte chain. In brief, one can control the polyelectrolytes aggregation by

controlling the salt concentration and the pH in the system.

There are several bio-polyelectrolytes in nature. Deoxyribonucleic acid (DNA) is

an example of a biological polyelectrolyte molecule. DNA is composed of two pairs

of ionisable phosphate groups. Synthesized polyelectrolytes can be used for different

biological and medical applications due to their solubility in water. In this study

we will be focusing on using polyelectrolytes for drug delivery applications. The

behavior of free and one end-tethered polyelectrolytes enables us to study different

drug delivery systems and micellar aggregations.

1.4 Polymer’s interactions

There can be either attractive or repulsive interactions between the polymer segments

from the same chain, different chains, and the surrounding molecules, such as solvent

molecules. These interactions affect the polymer conformations. In this study, we will

explore electrostatic, van der Waals, and steric interactions and their effect on polymer

conformations. We will use statistical mechanics to predict these configurations.

A polymer’s degree of flexibility arises from the covalent bonds between its monom-

ers, which represents the short-ranged interferences. Long-ranged interferences be-

tween polymer segments that are separated by large distance along the polymer chain

backbone, are responsible for determining the prevalence of certain polymer confor-

mations. The excluded volume effect is an indicator of long-ranged interferences that

10



www.manaraa.com

constraint two polymer segments from occupying the same location in space. In a

mixture, the Incompressibility constraint restricts the sum of the volume fractions of

all molecular species in the system to be equal to one. Van der Waals interactions

between polymer segments play a central role in the polymer entanglement. Van

der Waals interactions also appear between two polymer segments from two different

polymers. In a polymer solution, the van der Waals attraction or repulsion forces

between the solvent-solvent and solvent-monomer molecules affect the polymer con-

formational structure. In some systems with different salt concentrations and pH, the

electrostatic interactions significantly control the polymers’ aggregation. The compe-

tition between all these altered interactions determines the polymer conformational

structure.

1.4.1 Excluded volume

The excluded volume for any molecule in a space is the volume surrounding this

molecule that excludes the presence of all other molecules. In any system, it’s known

that "Like" molecules attract each other unless there is an electrostatic repulsion

between them. Thus, in a polymer solution, monomer molecules tend to attract each

other at a distance larger than the excluded volume. Within the excluded volume,

there is a repulsion interaction caused by the steric effect. This effect prevents two

monomers from overlapping. To explain this kind of behavior, we consider a potential

energy U(r) between two monomers separated by distance r [44]. This energy is equal

to the work done to bring one of the monomers from ∞ to be within a distance r

from the other one. Figure 1.9 sketches the potential energy U(r) as a function

of r. The hard-core barrier in the potential energy plot represents the repulsive

interaction between the two monomers within the excluded volume, and the attractive

well corresponds to the interactions between similar molecules.

The probability of finding two monomers separated by distance r is proportional

11
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Figure 1.9: Lennard-Jones potential plot shows the effective excluded volume inter-
action between two neighboring monomers in a solution.

to the thermal energy, KBT , where KB is Boltzmann factor and T is the absolute

temperature of the system.

P (r) = exp
(
−U(r)
KBT

)
(1.2)

Subtracting this probability from the total probabilities ( ∑P (r) = 1) gives

Mayer f-function (f(r)). Mathematically the excluded volume V is defined as

the negative integral of Mayer f -function over the whole volume in space.

V = −
∫
f(r)d3r = −

∫ [
exp

(
−U(r)
KBT

− 1
)]

d3r (1.3)

The excluded volume depends on the potential attractive energy and the absolute

temperature of the mixture. The relative strength of the excluded volume interaction,

for a specific mixture, depends strongly on the temperature. At a definite temperature

called the theta-temperature (Tθ), the excluded volume effect on the conformations

goes to zero, cancelling the net penalty of monomer-monomer contact. In this situ-

ation, the polymer chain has approximately ideal conformations. Thus, the solvent

at Tθ is known as theta-solvent. The excluded volume interactions increase in their

intensity, at temperatures higher than the theta temperature. At this point, beside
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the monomer-monomer attractions there are monomer-solvent attractions, leading to

a good-solvent environment. In contrast, at temperature below theta temperature,

the monomer-monomer attraction energy is dominant and the solvent is considered

as poor-solvent. Figure 1.7 shows a polymer chain in a good solvent, θ-solvent, and

poor solvent.

Considering a specific lattice system, which is the case in most of our study,

implicitly takes care of the excluded volume effect. In such a system, each lattice site

is occupied with only one molecular species. Thus, summing over all volume fractions

of molecular species (φi) on the system, goes to one.

∑
φi(r) = 1

This constraint, known as the compressibility constraint, accounts for the excluded

volume effect within any lattice system.

1.4.2 Van der Waals interaction

The van der Waals attraction between molecules is due to the presence of induced

electric dipole moments on a nearby non-polar molecule, corresponding to an effective

formation of separated charges within the molecule [25]. Induced polar molecules tend

to attract each other to form special types of interactions. These interactions can be

seen in a polymer mixture between two unbound monomers or between a monomer

and a solvent molecule. Normal thermal molecular motion disrupts the ordering

imposed by the van der Waals forces in the system. The thermal motion diminishes

as the temperature decreases, thus van der Waals forces become more effective at

ordering the molecules at lower temperature, and may cause a condensation of the

polymers.

In a polymer solution, polymer molecules are much larger than solvent molecules.

For this reason, Flory and Huggins used the cubic lattice model to study the van der

Waals interactions between solvent molecules and polymer segments (monomers).
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The Flory- Huggins model will be covered in the next chapter as a useful statistical

mechanical model in studying the thermodynamic properties of polymer solutions.

1.4.3 Electrostatic interactions

Consider a polymer solution system composed of charged molecules (polyelectrolyte)

and mobile salt ions. Charged polymers attract oppositely charged mobile ions, which

are called counterions, and repel mobile ions that have the same polarity, called co-

ions. Both counterions and co-ions are distributed in the system with a total density

ρq that is generating an electric potential field ψ(z) at distance z away from a charged

surface. The distribution of mobile salt ions is controlled by coulomb interaction and

molecular diffusion. The presence of counterions in the system shields the electric

repulsion between the charged polymer segments, which reduces the electric potential

field.

To understand the electrostatic interaction of a polymer solution first we need to

determine the Lagrangian of the system by studying its electrodynamics [47]. Then,

since we study the system at an equilibrium state, we should eliminate the magnetic

energy terms that are generated by the molecular dynamics. Hence, the following

relation describes the electrostatic energy of a canonical ensemble 1.

Uelec =
∫
dV

[
ρqψ(rrr)− 1

2ε(∇ψ(rrr))2
]

(1.4)

Note that ε is the permittivity of the medium, and ∇ψ(rrr) is the gradient of the

electric potential field that equates to the negative electric field EEE(r) of the system.

EEE(r) = −∇ψ(rrr) (1.5)

By taking the divergence of the electric filed we get Poisson’s equation:

∇ ·EEE(r) = −∇2ψ(rrr) = ρq
ε

(1.6)

1Canonical ensemble represents various possible states of a closed system with unchanged vol-
ume, temperature, and number of compositions. These ensembles differ in their total energy.
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where ∇2 is called Laplacian operator, and it varies for different coordinate systems;

see Appendix C.

Poisson’s equation allows us to calculate the electric potential of a specific system

that is made of an identified dielectric media by knowing the charge distribution of

a fixed number of charged molecules. The charge distribution is calculated using the

Boltzmann distribution equation [9].

f(z) = Ae−βE (1.7)

where, A: is a normalized constant.

β: is the inverse of thermal energy.

E: is the energy.

Equation 1.7 can be applied to the distribution of all ion concentrations of i species

in the system, Ci(z), that has C∞ bulk concentration.

Ci(z) = C∞e
−β∆Ei (1.8)

Then, we can write the charge density as follow:

ρq(z) =
∑
i

ZieC∞ exp (−βZieψ(z)) (1.9)

where Zi: is the charge valance.

e: is the elementary charge.

In such a system, the Poisson-Boltzmann model is used to study the charge

screening and colloidal stability against aggregation. This model was developed by

combining Poisson’s equation and the Boltzmann distribution equation. In the case

where the surface of a charged colloidal particle is described as a plane, one can solve

Poisson- Boltzmann equation to get the electric potential as (see Appendix D).

ψ(z) = σqλD
ε

exp(− z

λD
) (1.10)
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where σ is the charge density on the surface, and λD =
√

ε
2βe2Z2C∞

, is Debye length,

which is a screening distance. However, solving the same equation for a spherical

surface gives the following relation:

ψ(r) = QeR/λD

4πε
(
1 + R

λD

) e−r/λD

r
(1.11)

Note that Q = 4πR2σq, is the total charge on the surface of a sphere with radius

R.
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Chapter 2

Statistical Models and Methods

In this chapter, we use statistical mechanical methods to study thermodynamic be-

havior. Statistical mechanics is a branch of theoretical physics that enables us to

understand the natural phenomena of macroscopic systems by analyzing their mi-

croscopic and molecular behavior. Macroscopic systems are composed of numerous

particles that naturally fluctuate on the molecular length and time scale. Statistical

thermodynamics is a branch of statistical mechanics used for studying the equilibrium

states of a system. One branch of statistical thermodynamics studies the molecular

interactions between micro-molecules in the system explicitly. This branch is able to

deal with the most challenging problems such as the existence of the first-phase order

transition. Another branch of statistical thermodynamics simplifies the problems by

approximating some of the molecular interactions. In our study of polymer solutions,

we are devoted to methods that simplify the intermolecular interactions using the

mean-field approximation.

The study of thermodynamics is governed by the choice of the set of macro-

scopically observable variables. At statistical equilibrium, different macroscopic con-

straints define different kinds of statistical ensembles. TheMicro-canonical ensemble

is a statistical ensemble that has all its macroscopic states at equilibrium when the

energy, the volume of the ensemble, and the number of molecules are fixed (E, V,N)

. The Canonical ensemble is defined by the constraints of a fixed volume, number

of molecules and temperature (T, V,N). The Grand Canonical ensemble is defined

by the constraints of a fixed volume, temperature and chemical potential (E, V, µ◦).
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In this study, we will be dealing with a polymer solution under biological conditions,

which can be described as a container of a fluid system whose walls allows for both

heat and mass transfer. Our systems in this study are treated as being in a class

called the Semi-grand canonical ensembles, where the system can be defined as a sta-

tistical ensemble existing between the canonical and the grand canonical ensembles

constraints. Some of the molecules in the Semi-grand canonical ensemble have a fixed

number while other molecules have fixed chemical potentials [36].

Statistical mechanical theories and methods that can be applied to thermody-

namic problems in order to greatly simplify them will be further explored. The

specific techniques that apply to the models of this study are: the Flory-Huggins the-

ory of the thermodynamics of polymer solution, the mean-field approximation and

the use of the numerical methods for studying polymer solutions and the Monte Carlo

methods and Rosenbluth technique.

2.1 Flory-Huggins model of polymer solution

Flory and Huggins used the cubic lattice system to model polymer solutions. Be-

cause polymer molecules in polymer solution systems are much larger than solvent

molecules, they used the cubic lattice model to study the variety of ways to arrange

polymer segments for np number of polymer molecules and ns solvent molecules. In

the cubic lattice model, polymer segments and all other molecules in the system are

considered to be virtually identical in size. They studied all possible polymeric con-

figurations in the system by using self-avoiding random walks to build the polymer

chain, (see section 1.2) and filled the empty sites randomly with solvent molecules.

Most of the modeling in this study is of grafted polymers; therefore the possible

number of configurations of a polymer with polymerization number N is reduced. In

the cubic lattice model, polymer segments and all other molecules in the system are
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considered to be virtually identical in size.

The system under study is composed of ns number of solvent molecules and np

number of polymer molecules. Each polymer molecule has N segments. Flory defined

a lattice system containing M number of lattice sites where,M = Nnp + ns, and he

defined the molar fraction for each molecular species in the system as [44]:

φp = Nnp
M

and φs = ns
M

For a system that contains two different species only, we can denote the volume

fraction for each species as follows:

φp = φ and φs = (1− φ)

To study van der Waals interactions, Flory calculated the change in energy for each

monomer solvent contact (see Appendix B). This energy difference is giving by the

following relation:

∆ums = 1
2(2ums − umm − uss)

The intensive change of energy for the mixture per site is given by:

∆Ūmix = z

2φ(1− φ)(2ums − umm − uss) (2.1)

where z represents the number of nearest neighbors, which is the coordination number

of the lattice.

Flory introduced his dimensionless interaction parameter or Chi-parameter

(χ) to measure the strength of the interaction energy between two neighboring species

in the system.

χ ≡ z

2
(2ums − umm − uss)

KBT
(2.2)

Thus, we can rewrite the intensive energy for a mixture per lattice site as:

∆Ūmix = χφ(1− φ)KBT (2.3)

which is the mean-field description of the internal energy of a mixture.

19



www.manaraa.com

2.2 Mean-Field Theory

The idea of particle-to-field transformation is commonly used in polymer physics and

is described in Fredrickson’s book [13]. In particle-to-field transformation, the effect

of the direct interactions among polymer segments is replaced by decoupling the in-

teraction between those segments with one or two auxiliary fields. The statistical

field theories approach expresses the relevant partition function as a grand canoni-

cal partition function. The partition function describes the statistical properties of

the system at thermodynamic equilibrium as a functional integral over the auxiliary

potential fields (w(r)).

q =
∫
Dw exp(−H[w])

And correspondingly the average sum of an observable Φ can be written as:

〈Φ[w]〉 = q−1
∫
DwΦ[w] exp(−H[w]) (2.4)

where the notation
∫
Dw indicates a functional integral 1 over all possible potential

fields in the system, and H[w] is the effective Hamiltonian, which depends on the

particular interaction and the chain model used to construct the field theory.

The mean-field-approximation assumes that a single field configuration (w∗(r))

dominates the functional integrals, meaning that all configurations of the potential

field are neglected except for the particular configuration (w∗). In other words, the

effective Hamiltonian is stationary with respect to variations in (w(r)).

∂H[w]
∂w(rrr)

∣∣∣∣∣
w=w∗

= 0

This assumption allows us to obtain the "mean-field potential" w∗(r). Thus, we can

write the following relations:

q ≈ exp(−H[w∗]) 〈Φ[w]〉 ≈ Φ[w∗] (2.5)

1Functional integration is a collection of results in mathematics and physics, where the domain
of an integral is no longer a region of space, but a space of functions. So, it is a path integral where
its contour is a space.
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The mean-field approximation neglects the atomic scale fluctuations, which makes

it a poor approximation to study atomic or small molecular fluids. This limitation

is negated by the fact that the lattice model of polymer solution assumes that each

monomer occupies a single lattice cell. Furthermore, the mean field approximation

method includes only the fluctuations that occur within a lattice cell and neglects

all fluctuations extending beyond that scale length. Although this procedure is not

exact, it can often be very accurate. It also has the benefit of greatly simplifying the

numerical intractability of the problem.

2.3 Numerical methods

This study aims to study polymers behavior in continuous biological systems. The

complexity of these systems draws us to use numerical methods in calculating the

partition function and the potential fields in the system. Numerical techniques are

well suited to solve "field-theory" based problems by converting continuous variables

into discrete counterparts. This can be achieved in a finite system by defining a com-

putational grid of discrete points at which potential fields vary. This study covers

both simple numerical calculations of homogeneous polymer solutions where the po-

tential field varies in one direction only, and more complex cases in which we consider

variation on the potential field at each point in three-dimensional space.

In our numerical calculations, we apply the finite difference method1. By applying

this method in simple one-dimensional calculations, we assume that our system is

homogeneous on the x − y plane and differs on the z axis only. Let us consider a

finite system that goes from 0 to L in the z axis. The numerical approach allows us

to discretize the system into Lz number of equally spaced layers that have thickness

∆. This thickness is called the grid spacing, where Lz = L
∆ . The next step in the

finite difference method, is using the forward Euler difference approximation to define

1see Fredrickson [13]
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the first derivative of the potential field function at polymer configuration α, with

respect to z, (w(α, z)) as:

∂w(α, z)
∂z

= w(α, z + ∆)− w(α, z)
∆ +O(∆)

By using the centered space difference approximation to define the second derivative

of the potential field, we get:

∂2w(α, z)
∂z2 = w(α, z + ∆)− 2w(α, z) + w(α, z −∆)

∆2 +O(∆2)

Note that, the error in the second derivative, O(∆2), diminishes as we increase the

discretization and decrease the size of grid spacing ∆. Only the second derivative

is used to solve the numerical equations. We use Poisson and Poisson-Boltzmann

equations to solve for the electric potential in the system, using as an input the

charge density function. This allows us to neglect the error function in the equations

while getting very accurate results.

The last step in the numerical methods, is to impose the boundary conditions

at the boundary points: z = 0 and z = L. In most of our calculations, we inflect

the boundary conditions based on the electric potential properties in the system

(see Section 1.4.3). After applying these numerical methods, we end up with a set

of Ne nonlinear equations that describe the chemical equilibrium and the physical

interactions of polymer molecules in the system. That set of equations has Nν of

unknown variable, where Nν should be less than Ne. Then, we use the variation of

Newton’s method to find the zeroes of continuously differentiable functions, giving a

reasonable initial guess. The algorithm uses the generalized inverse of the Jacobian

matrix 1 instead of the inverse Jacobian to solve the nonlinear equations [26].

1Generalized inverse Jacobian matrix is the inverse of the multiplication of the transposition
Jacobian matrix and the Jacobian matrix itself is multiplied by the transposition Jacobian matrix
(J+

F = ((JT
F JF )−1)JT

F )
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This numerical approach has been used to solve the nonlinear equations that de-

scribe our systems. KINSOL 1 solver for Fortran90 language, and fsolve function in

MATLAB programming language have been selected to solve these nonlinear equa-

tions. Both the solvers use a variation of Newton’s method with a finite different

approximation that depends on a good initial guess. Their performance depends on

using iterative techniques to find values for the unknown variables that allow the

equations of the entire system to approach zero. Poorly chosen starting points could

affect the accuracy of the outputs, thus understanding the system’s behavior is critical

for accurate results.

2.4 Monte Carlo Methods

Monte Carlo (MC) method is a computational algorithm that uses random sampling

of different possible states of a system to generate a diagram, which describes the

behavior of the system from a probability distribution function [44]. It is also a

useful method for solving optimization and numerical integration problems. This

method allows for the evaluation of an average value of a specific variable (e.g φ) by

generating a very large number Ncon of random field configurations.

〈Φ(www)〉 ≈ 1
Ncon

Ncon∑
i=1

Φ(wwwi)

The approximated average becomes closer to exact by increasing the number of ran-

dom configurations. Monte Carlo methods restrict the generation of the random field

configurations with probability distribution function P (www) and the approximation of

this is defined as follows:

〈Φ(www)〉 ≡
∫
dwwwP (www)Φ(www) (2.6)

1The solver is a one of SUNDIALS solvers (SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers) [49]
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where,

P (www) ≡ exp(−H(www))∫
dwwwexp(−H(www))

1

This definition is normalized so that
∫
dwwwP (www) = 1. Such a definition is suitable for

a probability weight function that we will use for Rosenbluth weighting technique in

the next section.

The random field sequence of configurations that the MC methods adopt can be

generated starting with an initial state i. The Probability distribution for the system

to be in state i is Pi, where Pi = P (wwwi). The probability of the system moving to

state j is Pj. The dynamics of the system at time t can be described by the master

equation:
∂Pi(t)
∂t

=
∑
j( 6=i)

[MijPj(t)−MjiPi(t)] (2.7)

where Mij is a matrix that translates the system from state j to state i and vise

versa for matrix Mji. Equation 2.7 indicates that there is a gain or loss in the

probability of state i, due to the translation from or to the same state with the

corresponding matrix. Considering the steady state solution of the system causes the

master equation to go to zero. Accordingly, and by assuming that the forward and

the reverse probability between the two states i and j are in exact balance (that is

called microscopic reversibility), one can write the following:

MijPj(t) = MjiPi(t)

The Metropolis Monte Carlo form of transition rates is the most popular form of the

translational matrix.

Mij =


α exp(−∆Eij) ∆Eij > 0

α ∆Eij < 0
(2.8)

1Note that we consider a discrete approximation over the real contribution of the Hamiltonian
only (see Fredrickson [13] P.327 for more detailes)
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where α represents the number of transitions between the two states that have energy

Ei and Ej . And (∆Eij ≡ Ei − Ej) is the difference between the energy of the two

states in units of KBT .

2.5 Rosenbluth Technique

Monte Carlo methods depend on generating a very large number of random samples

in order to properly describe a specific state. Thus, MC methods have been used to

generate all possible configurations of short ideal or real chains that are described

by random walk or self avoiding random walk models respectively (see section 1.2

for more information). Note that in a cubic lattice, there are 6N different states or

configurations with a fixed starting point for an ideal chain of N number of monomers.

Due to the magnitude of the permutations, it is clear that sampling all the states of

a long chain is impossible. A MATLAB script was used to generate all possible

configurations for a free chain at a fixed point and for a one-end grafted chain. With

the available computing power and memory, it took approximately one full day to

collect all possible configurations for a chain with a maximum length of 11 monomers

(see listing 2.1).

Listing 2.1: A MATLAB script collects all possible configurations for SAW

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % In the name of Allah, The most Gracious and Merciful %

3 % All SAW Configurations in A Cubic Lattice %

4 % By Ebtisam Aldaais %

5 % BMEN | University of South Carolina %

6 % January 2014 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 clc

9 clear
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10 t = tic;

11 time = [];

12 Num_steps = 0; % Total number of steps

13 x=int8(0); % (0,0,0) is the starting point

14 y=int8(0);

15 z=int8(0);

16 count = int64(0);

17 old_count = int64(0);

18 total_conf = int64(0);

19 % A Matrix to store the seps for each confirmation

20 steps = int8([x;y;z]);

21 current_file = matfile('RW_0.mat','Writable',true);

22 current_file.steps = steps;

23 current_file.count = 1;

24 for Num_monomers= 1:Num_steps; % Number of steps

25 file_name = ['RW_',num2str(Num_monomers),'.mat'];

26 if(2==exist(file_name,'file'))

27 disp([file_name,' Exist'])

28 else

29 current_file = matfile(file_name,'Writable',true);

30 old_file = matfile(['RW_',num2str(Num_monomers-1)...

31 ,'.mat'],'Writable',true);

32 old_count = old_file.count;

33 total_conf = 0; % Counter for possible configurations

34 piece_size = 10240;

35 % Due to memory shortage we divide data into pieces.

36 for p = 1:(ceil(old_count/piece_size))

37 count=0; % Counter for possible configurations

38 % for current piece.

39 % Reading a piece of Data from a file.

40 a = 1+(piece_size*(p-1));

41 b = min(piece_size*p,old_count);

42 old_steps = old_file.steps(:,(a:b));
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43 [m,n]=size(old_steps);

44 steps_big = zeros(m+3,n*6, 'int8');

45 for i=1:n;

46 x=old_steps(m-2,i); % Column n-2 should have x value.

47 y=old_steps(m-1,i); % Column n-1 should have y value.

48 z=old_steps(m,i); % Column n should have z value.

49 Trajectory = [x+1 y z;x-1 y z;x y+1 z;...

50 x y-1 z;x y z+1;x y z-1];

51 % Check matrix converts rows to columns

52 check=reshape(old_steps(:,i),3,m/3)';

53 position=setdiff(Trajectory,check,'rows');

54 [n_row,n_col]=size(position);

55 if (n_row 6=0) % Places not visited yet

56 steps_big(1:(3*(Num_monomers+1)),count+1:count...

57 + n_row)=[repmat(old_steps(:,i),...

58 1,n_row);position'];

59 count = count + n_row;

60 end

61 end

62 current_file.steps(1:(3*(Num_monomers+1))...

63 ,total_conf+1:total_conf+count) = ...

64 steps_big(:,1:count);

65 total_conf = total_conf + count;

66 end

67 current_file.count = total_conf;

68 disp([Num_monomers,total_conf]);

69 end

70 temp = toc (t);

71 time = [time; temp];

72 h = plot(time,'--rs','LineWidth',2);

73 xlabel ( 'Number of steps' )

74 ylabel ( 'Time' )

75 title ( 'Time Graph' )
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76 saveas(h,['SARW_',num2str(Num_monomers)], 'png');

77 end

At this point, two constraints were found to be limiting in terms of modeling

longer chains. First, the code was taking a very long time to collect the configurations,

which was linked to the computer and the script performance. Second, the number

of configurations required a large amount of memory to save all possibilities. An

assumption could be made that we were able to improve the performance of the

code and the computer specifications so that it would take five seconds to collect all

possible configurations for a 9-monomer length chain, and 5 bytes to store all the

configurations. Even with these unreasonable assumptions, it was found that 756

thousand centuries would be required to collect the configurations of a 30-monomer

length chain, and 2168 TB of memory would be required to store the data (see Table

2.1 and Table 2.2).

Using these methods, it would literally be impossible to obtain all possible con-

figurations of a long chain.

However, Marshall and Arianna Rosenbluth (RB) developed a technique that

allows one to approximate all of the possible configurations of a real chain in a cubic

lattice, by using a system of weights [43]. Their paper is very clear and contains several

illustrative sketches to explain their idea. They started a self-avoiding random walk

(SAW) at point (0, 0, 0), and chose the second step to be (1, 0, 0). The first step is

thus specified for the walker. For the second step, the walker has only five possible

positions to choose from randomly. For every next step, the walker should check

the possible choices. The number of available positions (n) divided by the total

possible directions in three-dimensional systems (5) represents the weight of the step.

Therefore the total weight of the chain, according to Rosenbluth and Rosenbluth, can

be written as follows:

WN+1 =
(
n

5

)
WN (2.9)
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Table 2.1: Estimating the time needed to collect self-avoiding configurations for up to
30-monomers chain, when the code performance was improved to get all 9-monomers
chain configurations in 5 seconds.

Time needed to collect all configurations in:
No. Steps Seconds Minutes Hours Days Years Centuries

9 5.00E+00 8.33E-02 1.39E-03 5.79E-05 1.59E-07 1.59E-09
10 2.50E+01 4.17E-01 6.94E-03 2.89E-04 7.93E-07 7.93E-09
11 1.25E+02 2.08E+00 3.47E-02 1.45E-03 3.96E-06 3.96E-08
12 6.25E+02 1.04E+01 1.74E-01 7.23E-03 1.98E-05 1.98E-07
13 3.13E+03 5.21E+01 8.68E-01 3.62E-02 9.91E-05 9.91E-07
14 1.56E+04 2.60E+02 4.34E+00 1.81E-01 4.95E-04 4.95E-06
15 7.81E+04 1.30E+03 2.17E+01 9.04E-01 2.48E-03 2.48E-05
16 3.91E+05 6.51E+03 1.09E+02 4.52E+00 1.24E-02 1.24E-04
17 1.95E+06 3.26E+04 5.43E+02 2.26E+01 6.19E-02 6.19E-04
18 9.77E+06 1.63E+05 2.71E+03 1.13E+02 3.10E-01 3.10E-03
19 4.88E+07 8.14E+05 1.36E+04 5.65E+02 1.55E+00 1.55E-02
20 2.44E+08 4.07E+06 6.78E+04 2.83E+03 7.74E+00 7.74E-02
21 1.22E+09 2.03E+07 3.39E+05 1.41E+04 3.87E+01 3.87E-01
22 6.10E+09 1.02E+08 1.70E+06 7.06E+04 1.94E+02 1.94E+00
23 3.05E+01 5.09E+07 8.48E+06 3.53E+05 9.68E+02 9.68E+00
24 1.52E+11 2.54E+09 4.24E+07 1.77E+06 4.84E+03 4.84E+01
25 7.62E+11 1.27E+10 2.12E+08 8.83E+06 2.42E+04 2.42E+02
26 3.81E+12 6.36E+10 1.06E+09 4.42E+07 1.21E+05 1.21E+03
27 1.90E+13 3.18E+11 5.30E+09 2.21E+08 6.05E+05 6.05E+03
28 9.53E+13 1.59E+12 2.65E+10 1.10E+09 3.02E+06 3.02E+04
29 4.76E+14 7.95E+12 1.32E+11 5.52E+09 1.51E+07 1.51E+05
30 2.38E+15 3.97E+13 6.62E+11 2.76E+10 7.56E+07 7.56E+05

where WN+1 represents the weight for step number N + 1. The Rosenbluths indicate

that by calculating the average weight 〈WN〉 for the 3D SAW, one should find the

number of all possible configurations using the following formula:

Ncon = (5)N−1 〈WN〉 (2.10)

Using the Rosenbluth’s method, we were able to write a MATLAB script to cal-

culate all possible configurations for long chains (see listing 2.2). That script, as with

any SAW script, terminates the chain when there is no empty neighboring position

(dead-ended chain).
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Table 2.2: Estimating the memory needed to collect all self-avoiding con-
figurations for up to 30-monomers chain, when the computer capacity was
improved to collect all 9-monomers chain configurations at 5 bytes only.

Memory needed to save all configurations in:
No. Steps Bytes KBs MBs GBs TBs

9 5.00E+00 4.88E-03 4.77E-06 4.66E-09 4.55E-12
10 2.50E+01 2.44E-02 2.38E-05 2.33E-08 2.27E-11
11 1.25E+02 1.22E-01 1.19E-04 1.16E-07 1.14E-10
12 6.25E+02 6.10E-01 5.96E-04 5.82E-07 5.68E-10
13 3.13E+03 3.05E+00 2.98E-03 2.91E-06 2.84E-09
14 1.56E+04 1.53E+01 1.49E-02 1.46E-05 1.42E-08
15 7.81E+04 7.63E+01 7.45E-02 7.28E-05 7.11E-08
16 3.91E+05 3.81E+02 3.73E-01 3.64E-04 3.55E-07
17 1.95E+06 1.91E+03 1.86E+00 1.82E-03 1.78E-06
18 9.77E+06 9.54E+03 9.31E+00 9.09E-03 8.88E-06
19 4.88E+07 4.77E+04 4.66E+01 4.55E-02 4.44E-05
20 2.44E+08 2.38E+05 2.33E+02 2.27E-01 2.22E-04
21 1.22E+09 1.19E+06 1.16E+03 1.14E+00 1.11E-03
22 6.10E+09 5.96E+06 5.82E+03 5.68E+00 5.55E-03
23 3.05E+10 2.98E+07 2.91E+04 2.84E+01 2.78E-02
24 1.53E+11 1.49E+08 1.46E+05 1.42E+02 1.39E-01
25 7.63E+11 7.45E+08 7.28E+05 7.11E+02 6.94E-01
26 3.81E+12 3.73E+09 3.64E+06 3.55E+03 3.47E+00
27 1.91E+13 1.86E+10 1.82E+07 1.78E+04 1.73E+01
28 9.54E+13 9.31E+10 9.09E+07 8.88E+04 8.67E+01
29 4.77E+14 4.66E+11 4.55E+08 4.44E+05 4.34E+02
30 2.38E+15 2.33E+12 2.27E+09 2.22E+06 2.17E+03

Listing 2.2: A MATLAB script collects all possible configurations for SAW using RB

methods

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % In the name of Allah, The most Gracious and Merciful%

3 % Using Rosenbluth method in a cubic lattice to %

4 % calculate the number of configurations %

5 % Ebtisam Aldaais %

6 % USC (BMEN)/ Spring 2014 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 clc
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9 clear

10 clf

11 Num_walks=10000; % Nymber of trails

12 Num_steps=0;

13 all_Num_steps = zeros(Num_steps,1);

14 for ii=1:Num_steps+1;

15 StateFun = zeros(Num_walks,1);

16 disp(ii)

17 tot_W_RB=0; % Final RB weighting function for a walker

18 for j=1:Num_walks

19 coolrun = false;

20 while (¬coolrun)

21 x=int16(0);

22 y=int16(0);

23 z=int16(0);

24 steps = zeros(ii,3);

25 W_RB=1; % RB weighting for the first step

26 coolrun = true;

27 for i=1:ii;

28 steps(i,:) = [x y z];

29 Trajectory = [x+1 y z; x-1 y z; x y+1 z; ...

30 x y-1 z; x y z+1; x y z-1];

31 position = setdiff(Trajectory,steps,'rows');

32 [n_row,n_col] = size(position);

33 if(n_row 6= 0)

34 index = 1 + floor(n_row*rand);

35 x = position(index,1);

36 y = position(index,2);

37 z = position(index,3);

38 W_RB_i=n_row/5; % See RB paper

39 W_RB=W_RB*W_RB_i;

40 else

41 disp(['break at step number ',...
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42 num2str(i),' of ',num2str(j),' walk'])

43 coolrun = false;

44 break;

45 end

46 end

47 end

48 tot_W_RB = tot_W_RB+W_RB;

49 end

50 avg_W_RB = tot_W_RB/Num_walks; % Calculate Avrerage W_RB.

51 Num_conf = avg_W_RB*(5)^(ii-1); % Total number of configurations

52 end % as mentioned in RB paper.

In 2000, D. MacDonald and his group used a different logarithm that uses the

critical point of a chain to calculate the possible number of configurations for chains

of up to 26-monomers in length [34]. We refer to their number of configurations as

exact in Table 2.3. Then, we compared the results of Rosenbluths’ numerical methods

and the exact numbers to find the error percentage. Notice that the error percentage

increases with the number of monomers in the chain. However, the error percentage

never exceeded 7% for a 26-monomers chain, even with number of trails as low as

10, 000. The 10, 000 trails, for a 26-monomers chain, is about 10−14 fraction of the

total number of configurations, which is 4.21204× 1017.

These results give us the confidence to use the RB weighting function in modeling

the configurations of polymers. In complex systems where we couldn’t get the number

of trials above 10, 000, we used polymer chains that have 25 or less monomers to keep

the error percentage as low as possible. Multiplying the RB statistical weight by the

probability of each configuration improves the statistics, and provides a sample of all

possible configurations. This statistical weight works exactly as the weight function

1These numbers are calculated using equation 2.10 and the weighting function in Rosenbluth
paper (〈W 〉 = 1.46(0.941)N ) [43].

2The error percentage is between exact number of configurations and RB analytical calculations.
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Table 2.3: Comparison between Rosenbluth technique and MacDonald’s
logarithm in calculating the number of configurations of a real chain in
a cubic lattice.

Calculating the number of configurations
No. steps Exact RB Numerical 1 RB Analytical Error % 2

0 1.00E+00 1.37E+00 1.20E+00 0.0
1 6.00E+00 6.46E+00 6.00E+00 0.0
2 3.00E+01 3.04E+01 3.00E+01 0.0
3 1.50E+02 1.43E+02 1.45E+02 3.3
4 7.26E+02 6.73E+02 7.06E+02 2.8
5 3.53E+03 3.17E+03 3.38E+03 4.3
6 1.69E+04 1.49E+04 1.63E+04 3.9
7 8.14E+04 7.01E+04 7.77E+04 4.6
8 3.88E+05 3.30E+05 3.71E+05 4.4
9 1.85E+06 1.55E+06 1.76E+06 5.2
10 8.81E+06 7.30E+06 8.42E+06 4.5
11 4.19E+07 3.44E+07 3.98E+07 5.0
12 1.99E+08 1.62E+08 1.88E+08 5.5
13 9.44E+08 7.61E+08 8.89E+08 5.8
14 4.47E+09 3.58E+09 4.21E+09 5.9
15 2.12E+10 1.68E+10 2.01E+10 5.2
16 1.00E+11 7.92E+10 9.50E+10 5.1
17 4.74E+11 3.73E+11 4.46E+11 5.9
18 2.24E+12 1.75E+12 2.12E+12 5.1
19 1.06E+13 8.25E+12 9.95E+12 5.9
20 4.99E+13 3.88E+13 4.69E+13 6.1
21 2.36E+14 1.83E+14 2.22E+14 5.7
22 1.11E+15 8.60E+14 1.05E+15 5.6
23 5.25E+15 4.04E+15 4.91E+15 6.3
24 2.47E+16 1.90E+16 2.31E+16 6.6
25 1.17E+17 8.95E+16 1.09E+17 6.9
26 5.49E+17 4.21E+17 5.20E+17 5.3

in equation 2.6. Thus, we can define any averaged variable as:

〈Φ(α, r)〉 =
∫
dr Φ(α)WαP (α)∫
dr WαP (α) (2.11)

where P (α) represents the probability of configuration α.

33



www.manaraa.com

Chapter 3

Decoupling The Mean Field Theory

Polymeric tissue materials attract much scientific interest due to their very useful

biomedical applications ranging from drug delivery systems and adhesive materials

to their regulatory effect on enzymes and gene expressions [3, 58]. Understand-

ing the competition between intermolecular interactions is vital to engineer "smart"

nanostructured materials. The complex coupling of van der Waals, electrostatic,

and steric interactions influences the thermal and electrical response of a polymer’s

molecular structure. In some highly detailed molecular field theories, the attractive

interactions between polymer segments are determined via exact calculations of the

intra-molecular interactions, while the inter-molecular interactions are treated with

the mean field approximation, which leads to double counting. This chapter presents

a modification of the three-dimensional (3D) mean field approximation in order to

correct for the double counting of the inter-molecular interactions that occurs in the

standard mean field approach. The new approach is applied on a system with ther-

moresponsive polymers and polyelectrolytes. The free energy of one end grafted

polymers in a cubic lattice system with a coordination number of six is determined

for both the standard mean field approach and the modified mean field. The re-

sults section shows a comparison between the standard mean field approach and the

modified mean field approach.
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3.1 Polymer Biomaterials Applications

Thermoresponsive polymeric materials represent one of the most exciting and

promising classes of materials, especially for biomedical applications. Thermorespon-

sive polymers show configurational or phase changes with the variation of tempera-

ture. This property manipulation has been used in numerous biomedical applications

[3, 58] (see Figure 3.1). The usage of the thermoresponsive polymeric drug delivery

matrix can improve the drug release at the site of action under the desired biologi-

cal conditions [18]. Thermoresponsive polymeric vectors are very interesting tools for

gene delivery [55]. In addition, there is a new trend to use thermoresponsive materials

in designing a local radiotherapy system [19]. These applications are achieved through

manipulation by the collapse and expansion of the thermoresponsive polymers.

(a) UCST polymers at low T (b) UCST polymers at high T

Figure 3.1: A 3D cubical and continuous illustration of UCST grafted polymers
at low and high temperature (the red spheres that are attached to the polymers
characterize drug molecules).

Thermoresponsive polymers are divided into two main types: (1)Those that

present at Low Critical Solution Temperature (LCST). Below this temperature they

and the solvent are completely miscible. (2) Those that present at Upper Critical

Solution Temperature (UCST). Above this temperature they and the solvent are com-

pletely miscible [58]. Thermoresponsive polymers with an LCST of about 32◦, such
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as poly(N -isopropylacrylamide) (PNIPAm), have been used to protect a drug until it

gets inside the body. Interestingly, their transition from hydrophilic material below

LCST to hydrophobic material above this temperature can be controlled. Specific

changes to the synthesis of the thermoresponsive material of (PNIPAm) polymer can

increase its LCST to be close to the body temperature. Moreover, incorporation of

PNIPAm into a cross-linked polymer gel leads to a more sustainable drug release in

comparison to the intravenous injection [3]. LCST cross-linked gels that are loaded

with the desired drug swell below LCST, which is modified to be around the body

temperature. Inside the body where the temperature is above the LCST point, the

gel shrinks gradually causing the drug to leave the gel matrix.

In contrast, UCST polymers have been used to control drug release by stretching

the UCST matrix while increasing the temperature. The UCST polymer’s matrix

holds the drug at temperatures below the UCST by forming a tight polymeric net

around the drug. Above the UCST, polymers stretch allowing the drug to escape

from the polymeric matrix. For example, interpenetrating network hydrogels grafted

to β-cyclodextrin have been used to release a drug at temperatures above 35◦ [58].

Thermoresponsive UCST type polymers are considered as potential drug carriers

for cancer treatment, such as methoxy-poly(ethylene glycol)-block-poly(acrylamide-

co-acrylonitrile) (mPEG-b-P(AAm-co-AN)) amphiphilic copolymer [20]. The first

part of this chapter models homopolymers where the UCST lies close to the body

temperature. The polymers under study become hydrophobic (collapse) below the

UCST and hydrophilic (expand) above the UCST.

Polyelectrolyte nanostructured materials for therapeutic applications have re-

constructable surfaces that allow tailoring of permeability, as well as mechanical and

adhesive properties [48]. Polyelectrolytes are capable of dissolving in an aqueous so-

lution generating charged monomers (see Section (1.3)). Figure 3.2 illustrates the

behavior of grafted polyelectrolytes in a solvent at low and high salt concentration.
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Notice that at low salt concentration the charged monomers on the polyelectrolytes

repel each other causing the polymer chain to stretch. In contrast, at high salt con-

centration, the salt ions screen the charged monomers on the polymer chains allowing

them to shrink.

(a) Polyelectrolytes at low Csalt (b) Polyelectrolytes at high Csalt

Figure 3.2: A 3D cubical and continuous illustration of grafted polyelectrolytes at
low and high salt concentration.

The glucose-sensitive insulin-releasing system, which is still under development, is

an example of a Polyelectrolyte nanostructured material [14]. The therapeutic system

is an insulin loaded matrix that contains pH-sensitive polymers and glucose oxidase.

The presence of glucose in the system causes its oxidation into a gluconic acid and

hence decreases the pH. As a result, pH-sensitive polymers shrink allowing the release

of insulin. Another example of a Polyelectrolyte therapeutic nanostructed material

is a wound healing hybrid biomaterial. Ito and colleagues designed a novel sheet-

shaped poly(ethylene glycol) (PEG) grafted chitosan hydrogel (PEG-g-chitosan) with

cross-linkable polymeric micelles that carry a drug [23]. The drug release mechanism

depends on the degradation of the polymeric network and the diffusion of the com-

pounds through the hydrogel. Recently, a graphene-based nanosheet material has

been designed for specific co-delivery of an anticancer drug, Doxorubicin (DOX) [24].

The nano-carrier is administrated intravenously and accumulates at the tumor site
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through passive and active affects, where it internalizes into the tumor cell through

endocytosis. The acidic environment triggers the DOX release into the endosome

where it causes DNA damage and an apoptosis of the cancer cell. Figure 3.1 illus-

trates the general three-dimensional architecture of Polyelectrolyte nanostructured

materials.

3.2 Limitations of The Conventional Mean-Field

The ability to control the molecular organization of tethered polymers, and corre-

spondingly to reconstruct the surface of polymeric nanomaterials, is critical to fur-

ther development of a design platform for tissue biomaterials and therapeutic de-

vices. Polymeric molecular organization in highly inhomogeneous biological systems

strongly depends on the complex coupling between van der Waals, electrostatic, and

steric interactions in the system. Most theoretical studies simplify the complexity of

the system by using the mean-field approximation, in which the direct interactions

between the molecules in the system are modeled with interactions between the sys-

tem’s supplementary fields. The attractive intra-molecular interactions, which are

the interactions between two unbound polymer segments from the same polymer, are

calculated exactly while building the polymer chain using self avoiding random walk

techniques. The attractive inter-molecular interactions, which are the interactions

between two unbound monomers from two different polymers, are determined with

the mean field approximation [51, 56, 52]. The standard mean field approach studies

the interactions between the segments of the polymer under study and the segments

of all polymers in the system including the polymer under study itself. Including the

segments of the polymer under study produces an over-counting, and accordingly an

inaccuracy in the calculations of the inter-molecular interactions.

The decoupled mean field should improve the understanding of the molecular in-

teractions in a highly inhomogeneous system by modifying the mean field approxima-
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tion required in calculating the attractive inter-molecular interactions. The modified

mean field approximation is applied by studying one end-grafted polymers in a cubic

lattice system with a coordination number of six. Two highly inhomogeneous systems

are modeled and studied:

• A system of end grafted thermoresponsive polymers with a UCST of approx-

imately 37◦. Such polymers collapse below the UCST and stretch above the

UCST.

• A system of grafted polyelectrolytes that are effected not only by the tempera-

ture of the system, but also by the salt concentration and the pH of the solvent.

3.3 The Study of Grafted Thermoresponsive Polymers

The modification in the mean-field approach to calculate the inter-molecular interac-

tions is examined in a designed thermoresponsive therapeutic tissue material system.

The tissue material design is that of one end-grafted polymers to a solid surface. To

mimic this design, the polymers are modeled in a solvent (water) (see Figure 3.1). In

such a system, polymers self assembly is affected by the temperature of the system

only.

3.3.1 The Model

The system is modeled as a controlled cubic lattice system at which the X and Y

coordinates go from −x : +x and −y : +y, while the Z coordinate goes from 0 : +z.

On the surface of the cubic lattice (at Z = 0), a number of Np grafted polymer chains

with a polymerization number N are generated. Polymers are generated at equally

spaced points in the two principle directions of the plane of the surface. In other

words, the grafting points are placed symmetrically in a square pattern, and d is the

distance in the two orthogonal directions that separate the grafted points (see Figure
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(3.1)). The density of polymers on the solid surface is σp, where σp = Np

A
, and A is

the area of the solid surface.

The cubic lattice model is discretized into equally spaced points (i, j, k) allowing

the system variables to change at each point. Hence, our system has a total number

of (i × j × k) sites, where i, j, and k characterize the number of units at the X, Y,

and Z axes respectively. The system is enforced under periodic boundary conditions

in the planar surface direction, to insure that all polymers segments are inside the

(i× j × k) lattice sites, and that the system is continuous.

The self avoiding random walk (SAW) technique is used to generate the grafted

polymers. Starting with the first polymer, Ncon number of configurations are gener-

ated. Then, the exact same configurations are applied on all the grafting points at the

surface. Each polymer ii (ii = 1 : Np) has a probability Pii(α) to be at configuration

α, where α goes from 1 : Ncon. Rosenbluth weighting method is used to improve the

statistics efficiency on calculating the probabilities. The following is the Rosenbluth

weighting function that is used to account for all configurations [43]:

WRB =
N∏
m=1

(
D

5

)
(3.1)

The weighting function is calculated while building each polymer chain ii, which

has N number of monomers (m = 1 : N). The variable D is the number of available

positions for the next monomer. The actual position is chosen randomly. To calculate

the probability of having the monomer at any specific position, the number D should

be divided by five, which is the maximum number of available positions for a self

avoiding random walk in a simple cubic lattice system [43].

The temperature effect on the polymer configurations is tested by calculating

the end-to-end distance at different temperatures. The average end-to-end distance

squared for Ncon number of configurations (α) of polymers that have N number of
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monomers is given by:

〈R2〉 =
∑Ncon
α=1 R

2 WRB exp(−βEintra(α))∑Ncon
α=1 WRB exp(−βEintra(α))

(3.2)

where (Eintra(α)) is the intra-molecular energy for each configuration (α), and is given

in the inverse thermodynamic energy unit, β (see section (3.3.2) for more details on

how we calculate Eintra(α)). In the system, β is chosen carefully to insure that the

polymers are collapsed away from the site of action. Plot (3.3) shows the relation

between the average end-to-end distance square (〈R2〉) for end grafted polymers and

the length of the chain (N) at different temperatures (β = 1
KBT

). At KBT ≈ 3 the

(3.3) plot shows a linear relation between 〈R2〉 and the number of monomers as in

the case of an ideal chain model. Thus, we consider the temperature at this point to

be Tθ.

Figure 3.3: Effect of temperature on the
chain end-to-end distance.

The tethered polymers are presented in an aqueous solution. The model assumes

that polymer segments and solvent molecules have the same volume (see Figure (3.1))

and are therefore subject to steric and van der Waals forces 1. The repulsive steric

1See section 1.3 for more details.
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interactions are accounted for through the cubic lattice geometry and the assumption

of a good solvent. The van der Waals interactions are accounted for through the

intra and inter-molecular interactions. Figure (3.4) shows two polymers of different

configuration surrounded by solvent molecules in a 2D SAW model. The green arrows

indicate the intra-molecular interactions between the unbound nearby monomers from

the same polymer. The blue arrows indicate the inter-molecular interactions between

the unbound nearby monomers from two different polymers. The values of these two

short-ranged attractive interactions, (εintra and εinter), have been chosen carefully so

they don’t affect the solubility of the solvent in the system. The model demonstrates

the physical interactions between all molecules in the system that effect polymer

configuration due to thermal variations.

Figure 3.4: A 2D SAW model of two polymers in a cubic lattice, with different
configurations and surrounded by solvent molecules. The green and the blue arrows
represent the intra and inter-molecular interactions respectively.

3.3.2 Theoretical Approach

To calculate the free energy of the system, a theoretical approach that is developed

from a single chain mean field theory (SCMF) is used. SCMF theory explicitly consid-

ers the shape, size, charge, configurations, and charge distribution of each individual
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molecule in the system. The theory describes the interactions of a single molecule

with the surrounding mean molecular field (MF) by determining the most probable

configurations of the molecule through the probabilities of each individual molecule.

For each configuration (α), one can calculate the polymer intra-molecular interaction

energy Eintra(α) explicitly by triggering the monomers position(x, y, z) within the

polymer chain (see Figure 3.5).

Figure 3.5: Calculating the
intra-energy for a specific con-
figuration.

Each monomer in the chain is mapped by calculating the distance between monom-

er i and monomer i + 3 and placing a constraint on that distance. This constraint

should be equal to one to add an intra interaction. Thus, we define Eintra(α) for a

specific configuration α mathematically as:

Eintra(α) = −εintra
Nm∑
n=1

Nm∑
m=n+3

δ(r) (3.3)

where εintra represents the elementary intra attractive energy, n and m are the

monomers under study, and δ(r) is a Kronecker delta function that equals 1 when

r = 1 and zero otherwise, where r is defined as:

r =
√

(x(n)− x(m))2 + (y(n)− y(m))2 + (z(n)− z(m))2 (3.4)
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In an incompressible system the inter-molecular interaction is modeled by deter-

mining the effective attractions between polymer chains. The mean field approach

has been used to calculate the average inter-molecular interactions (Einter(α)) in most

theoretical studies of polymers [50, 42, 46]. The conventional mean-field approach

determines the average intermolecular attraction through the interactions between

the average volume fractions of each point in space and its neighbors. The average

intermolecular interaction is defined mathematically as follows:

〈Einter(α)〉 = −εinter2

NP∑
ii=1

∑
i

∑
j

∑
k

〈φp(i, j, k)〉〈φintp (i, j, k)〉 (3.5)

where εinter represents the elementary inter-attractive energy, which is divided by two

to correct for the double counting of the interactions. The average volume fraction

at point (i, j, k) in a space is defined as follows:

〈φp(i, j, k)〉 =
Np∑
ii

∑
α

Pii(α)np,ii(α, i, j, k) (3.6)

where np,ii(α, i, j, k) is the Kronecker delta function that equals 1 at configuration α,

when a polymer segment of polymer ii occupies the (i, j, k) position. 〈φintp (i, j, k)〉 is

what is called by Oversteegen and his colleagues the contact fraction, and is defined

as follows [41]:

〈φintp (i, j, k)〉 = 1
D

∑
i=l,−l

(
φ(i+ l, j, k) + φ(i, j + l, k) + φ(i, j, k + l)

)
(3.7)

where D is the number of coordination in the system. Notice that 1
D

represents a

weighting function of possible interactions around point (i, j, k), which is equal to 1
6

for all neighbors in 3D system.

The decoupled mean-field approach increases the efficiency of calculating the

inter-molecular interaction. Thus, all possible inter-molecular interactions for each

monomer are collected while building the chain using SAW technique. While building

the chain, each additional monomer will have a number of possible positions, one of
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Figure 3.6: Calculating the num-
ber of intermolecular interactions
at several sites for specific config-
uration η∗ii(α, i, j, k).

which is chosen for a specific configuration while the others are counted as possible

inter-molecular interaction sites η∗ii(α, i, j, k) (see Figure 3.6).

In the decoupled mean-field approach the average inter-molecular interaction en-

ergy is defined as follows:

〈Einter(α)〉 = −εinter2

NP∑
ii=1

∑
i

∑
j

∑
k

〈η∗ii(i, j, k)〉〈φ∗ii(i, j, k)〉 (3.8)

where 〈η∗ii(i, j, k)〉 is the average number of inter-molecular interactions at site

(i, j, k) due to polymer ii, and 〈φ∗ii(i, j, k)〉 is the average volume fraction at site

(i, j, k) due to all polymers in the system except polymer ii. The mathematical

definitions of these two quantities are as follows:

〈η∗ii(i, j, k)〉 = 1
D

∑
α

Pii(α)
∑

l=1,−1

1−
∑
i

∑
j

∑
k

np,ii(α, i, j, k)


[
np,ii(α, i+ l, j, k) + np,ii(α, i, j + l, k) + np,ii(α, i, j, k + l)

]

〈φ∗ii(i, j, k)〉 =
NP∑

jj 6=ii=1

∑
α

Pjj(α)np,jj(α, i, j, k)

(3.9)

where we use ( 1
D

= 1
6) as the weighting function of the decoupled inter-molecular

interactions fraction.
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The total free energy function of a system of thermoresponsive polymers, is defined

as the sum of the polymer’s free energies that are caused by the intra and the inter-

molecular interactions. Notice that the steric energy is embedded in the cubic lattice

model. Thus, the free energy function per unit area can be written as follows:

Ω = β [〈Eintra〉+ 〈Einter〉] + 1
A

Np∑
ii

(∑
α

Pii(α) lnPii(α)
)

(3.10)

The first term in the free energy function denotes the effect of the intra and the

inter-molecular attractive energies between polymer chains. The second term denotes

the conformational entropy of polymer chains, where Pii(α) refers to the probability

of having chain ii at configuration α.

The system under study is subject to the incompressibility constraint, where each

lattice site must be occupied by a monomer or water molecule. This constraint is

expressed mathematically as follows:

〈φp(i, j, k)〉+ φw(i, j, k) = 1 (3.11)

The first term in the incompressibility constraint accounts for the average volume

fraction of all polymer segments in the system, and the second term denotes the

volume fraction of water molecules. To solve the incompressibility constraint equa-

tion, the average polymer volume fraction is written in terms of the probability of

having a polymer ii at configuration α. This probability can be expressed by min-

imizing the free energy function with respect to the polymer’s occupation fraction,

and introducing the Lagrange multipliers π(i, j, k).

Pii(α) = wRB(α)
qii

exp
(
− β

[
Eintra,ii(α)− Einter,ii(α)

])
(3.12)

where qii is a state function for polymer ii, ensuring that∑α Pii(α) = 1. Here, wRB(α)

is the Rosenbluth weighting function that should improve the statistical efficiency.

Also note that, vp,ii(α, i, j, k) = np,ii(α, i, j, k)vw. Minimizing equation (3.23) gives us

46



www.manaraa.com

the following definition for the density of water molecules at point (i, j, k):

ρw(i, j, k)vw = exp(−βπ(i, j, k)vw) (3.13)

The volume of the water molecule is chosen to symbolize the volume of polymer

segments. Equation (3.13) emphasizes the physical meaning of Lagrange multipliers

by relating these values to the osmotic pressure that keeps the chemical potential

constant at any specific position, while the number of particles at the same position

fluctuates 1.

3.4 The Study of Grafted Polyelectrolytes

Grafted polyelectrolytes are used to examine the modification of the mean-field the-

ory. The model mimics a tissue material that is made of polyelectrolytes. As the

polyelectrolytes dissolve in the biological solution, they produce charged functional

groups (see Section 1.3). Polymer’s self-organization is affected not only by the tem-

perature, but also by the surface charge density, the salt concentration of the solvent

and the pH of the surrounding. The model and the theoretical approach for this

model are described below.

3.4.1 The Model

The model of the grafted polyelectrolytes is similar to the inhomogeneous model of

thermoresponsive polymers (see Subsection 3.3.1), but with the addition of salt ions

and charged polymer segments that are distributed in the lattice sites (see Figure

3.7).

The model contains grafted polybases in a biological solution. The choice of poly-

base should serve in increasing the attractive interaction between the drug delivery

1For more information on the osmotic pressure π(i, j, k) reed the Tethered Polymer Layers
chapter from Advances in Chemical Physics [50].
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Figure 3.7: A 2D SAW model of two polyelectrolytes in a cubic lattice with two
different configurations surrounded by solvent molecules and salt ions.

device and the negatively charged surface of the cell [1, 6]. The basic polyelectrolytes

contain monomers that are able to either ionize to positively charged molecules or

stay neutral through the interaction B+H+ −−⇀↽−− BH+. The equilibrium dissociation

constant Kd of the interaction is given by:

Kd = [B][H+]
[BH+]

(3.14)

This constant can be determined by the change in the standard state Gibbs free

energy of the reaction, 4G0 = µ0
B + µ0

H+ − µ0
BH+ , where µ0

i is the standard chemical

potential, and Kd = C exp (−β4G0). C is a dimensional constant, and β is the

inverse thermodynamic temperature
(
β = 1

KBT

)
.

The aqueous solution has dissociated monovalent salt molecules (NaCl −−→ Na++

Cl– ) (see Figure 3.1). The bulk salt concentration is Csalt. In this study, water

molecules are able to dissociate to protons H+ and hydroxyl ions OH– . The study

covers a pH range of 5.8 : 7.6, which is consistent with therapeutic tissue materials

that target malignant tissues [54].

This model assumes that there is no change in the volume of the ionized and

neutral monomers. Hence, the volume of both B and BH+ is equal, and it is identical
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to the volume of all molecules in the system. Another considered assumption, is that

the activities of all species in the system are given by their concentrations. These two

assumptions are the same assumptions used by Uline in modeling DNA molecules [56].

All molecules in the system are subject to different kinds of forces, such as steric,

van der Waals and electrostatic forces. The repulsive steric interactions are modeled

with the assumption that the system contains a good solvent and by employing a cubic

lattice model. The van der Waals interactions are accounted for through the intra and

inter-molecular interactions as discussed in the study of thermoresponsive polymers

(see Section 3.3.1 and Figure 3.4). The values of the two short-ranged attractive

interactions, (εintra and εinter), have been chosen carefully so they don’t affect the

solubility of the solvent in the system. The electrostatic interactions between two

charged molecules in the system are influenced by several variables. This model

studies the effect of the surface charge coverage; or the number of charged elements

per unit area (σq), the salt concentration (Csalt) in the system, and the bulk pH

on the electrostatic interactions as well as the temperature effect on the polymers

aggregations. Different electrostatic interactions cause different configurations and

accordingly, different intra and inter-molecular interactions. The model demonstrates

the complexity of the chemical equilibrium and the physical interactions between all

molecules in the system.

3.4.2 Theoretical Approach

Building on the thermoresponsive model, we write the total free energy function as

the sum of the free energies that are caused by all possible interactions between

polymer segments, solvent and ion salt molecules in the system.

F = Fpolymer + Felect + Fif + Fchem + Fmix (3.15)

The first term accounts for the polymers self energy that is caused by intra and

49



www.manaraa.com

inter-molecular interactions, and the polymers conformational entropy. The decou-

pled MF approach that is discussed in the previous section (see Section 3.3.2) is used

to calculate the inter-molecular interactions in the system.

Fpolymer = 〈Eintra〉+ 〈Einter〉+ TSpoly (3.16)

The second term accounts for the electrostatic interactions between all molecular

species in the system:

Felec =
∑
i

∑
j

∑
k

[
〈φq(i, j, k)〉ψ(i, j, k)− ε

2 (∇ψ(i, j, k))2
]

(3.17)

where, ψ(i, j, k) is the electric potential at point (i, j, k), and ε is the medium per-

mittivity that is held to be constant in the system. The expression (∇ψ(i, j, k))2

characterizes the gradient of the electric potential in a Cartesian coordinate system

squared. We define 〈φq(i, j, k)〉 as the average occupation fraction of charges at posi-

tion (i, j, k) , and it is stated mathematically as follows:

〈φq(i, j, k)〉 = fH+(i, j, k)qp 〈φp(i, j, k)〉+
∑
i

qi 〈φi(i, j, k)〉 (3.18)

where fH+(i, j, k) is the fraction of protonated monomers along the polymer chains.

Also, qi and 〈φi(i, j, k)〉 are the charge and the occupation fraction of ion i(i =

H+,OH−,Na+,Cl−) respectively. 〈φp(i.j.k)〉 is the average occupation fraction of the

polymers at point (i, j, k), and it is given by the following relation:

〈φp(i, j, k)〉 =
Np∑
ii

∑
α

Pii(α)np,ii(α, i, j, k) (3.19)

The expression (∆ψ(i, j, k))2 characterizes the gradient of the electric potential in

a Cartesian Coordinate system squared, which provides a scalar (see Appendix C).

The third term incorporates the ion formation free energy for water;

Fif =
∑
i

∑
j

∑
k

(
φH+(i, j, k)µ◦H+ + φOH−(i, j, k)µ◦OH−

)
(3.20)
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The fourth term represents the free energy caused by the chemical interaction;

Fchem = 1
β

∑
i

∑
j

∑
k

〈φp(i, j, k)〉
{
fH+(i, j, k)

[
ln fH+(i, j, k) + βµ◦BH+

]

+
(
1− fH+(i, j, k)

) [
ln
(
1− fH+(i, j, k)

)
+ βµ0

B

] } (3.21)

The fifth term is the free energy due to mixing all species in the system;

Fmix = 1
β

∑
i

∑
j

∑
k

[φw(i, j, k)(lnφw(i, j, k)− 1)] + [φH+(i, j, k)(lnφH+(i, j, k)− 1)]

+[φOH−(i, j, k)(lnφOH−(i, j, k)− 1)] + [φ+(i, j, k)(lnφ+(i, j, k)− 1)]

+[φ−(i, j, k)(lnφ−(i, j, k)− 1)]
(3.22)

Accordingly, the free energy function per unit area for a semi-grand canonical

ensemble is given as follows:

Ω =β
[
〈Eintra〉+ 〈Einter〉

]
+ 1
A

Np∑
ii

(∑
α

Pii(α) lnPii(α)
)

+ β
∑
i

∑
j

∑
k

[
〈φq(i, j, k)〉ψ(i, j, k)− ε

2 (∇ψ(i, j, k))2
]

+
∑
i

∑
j

∑
k

〈φp(i, j, k)〉
[
fH+(i, j, k)

[
ln fH+(i, j, k) + βµ0

BH+

]

+ (1− fH+(i, j, k))
[
ln(1− fH+(i, j, k)) + βµ0

B

] ]

+
∑
i

∑
j

∑
k

[[
φw(i, j, k)(lnφw(i, j, k)− 1)

]

+
[
φH+(i, j, k)(lnφH+(i, j, k)− 1 + βµ0

H+)
]

+
[
φOH−(i, j, k)(lnφOH−(i, j, k)− 1 + βµ0

OH−)
]

+
[
φ+(i, j, k)(lnφ+(i, j, k)− 1− βµ+)

]
+ [φ−(i, j, k)(lnφ−(i, j, k)− 1− βµ−)]

]
(3.23)

The first term in the free energy function accounts for the intra and the inter-

molecular attractive energies of polymer chains. The second term denotes the confor-

mational entropy of polymer chains, where Pii(α) refers to the probability of having
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chain ii at configuration α. The third term accounts for the electrostatic interactions,

which have been clarified previously.

The fourth term in the free energy function represents the acid base equilibrium,

while the fifth term accounts for the translational entropy of all molecular species

in the system and the formation of anions. Here, µ0
i and µi represent the standard

chemical potential and the bulk chemical potential of specie i respectively.

The system under study is subject to the incompressibility constraint, where each

lattice site must be occupied by a monomer, counterion, water, or salt ion molecule.

This takes care of the excluded volume interactions through the following relation:

〈φp(i, j, k)〉+ φw(i, j, k) + φH+(i, j, k) + φOH−(i, j, k)

+ φ+(i, j, k) + φ−(i, j, k) = 1
(3.24)

The first term in the incompressibility constraint denotes the average volume frac-

tion of charged polymer segments along with those which are bound to counterions.

The other terms in the constraint equation represent the volume fraction of the water

(solvent), proton, hydroxyl ion, cation, and anion molecules respectively. Notice that

free counter ions are considered in the anion volume fraction φ−(i, j, k). To solve the

incompressibility constraint equation, the average polymer volume fraction is written

in terms of the probability. Another set of equations is needed to learn more about

the system, thus we extremitize the free energy function with respect to the electric

potential ψ(i, j, k) to get Poisson’s equation.

∆ψ(i, j, k) = −〈φq(i, j, k)〉
Aε

(3.25)

where the simple ∆ symbolizes the Laplacian or the divergent of the gradient of

the electrical potential (∆ = ∇ · ∇), and for the computational analysis we use the

centered space difference approximation method, which we mentioned in section 2.3.

We consider two boundary conditions in order to solve Poisson’s equation. The

first condition enforces the surface charge coverage to be equal to a given value σq
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(Meaning that the surface potential is constant at the surface), and the second one

insures that there are no charges at a distance far away from the grafted surface.

These two boundary conditions are expressed mathematically as follows:
ψ(i, j, k = 0) = ψ0 ⇒ ∇k ψ(i, j, k = 0) = 0

lim
k→∞

ψ(i, j, k) = 0
(3.26)

By minimizing the free energy function with respect to the polymers occupation

fraction, and introducing the Lagrange multipliers, π(i, j, k), one can get the following

expression for the probability of having a polymer ii at configuration α:

Pii(α) = w(α)
qii

exp
−β[Eintra,ii(α)− Einter,ii(α)

]
−
∑
i

∑
j

∑
k

vp,ii(α, i, j, k)

[
βqpψ(i, j, k) + ln fH+(i, j, k)− βπ(i, j, k)

] (3.27)

where qii is a state function for polymer ii, ensuring that ∑α Pii(α) = 1. Here,

w(α) is the Rosenbluth weighting function. Also, vp,ii(α, i, j, k) = np,ii(α, i, j, k)vw.

By minimizing equation (3.23), we get the following definitions for all the molecular

species’ densities in the system, where ρi(i, j, k) = φi(i,j,k)
vw

, and vw is the volume

fraction of the water molecule.

ρ+(i, j, k)vw = exp(βµ+ − βπ(i, j, k)v+ − βq+ψ(i, j, k))

ρ−(i, j, k)vw = exp(βµ− − βπ(i, j, k)v− − βq−ψ(i, j, k))

ρH+(i, j, k)vw = exp(−βµ0
H+ − βπ(i, j, k)vw − βqH+ψ(i, j, k))

ρOH−(i, j, k)vw = exp(−βµ0
OH− − βπ(i, j, k)vw − βqOH−ψ(i, j, k))

ρw(i, j, k)vw = exp(−βπ(i, j, k)vw)

(3.28)

where ρ+(i, j, k) and ρ−(i, j, k) are the densities of the cations and the anions seg-

ments at (i, j, k) position. The volume of the water molecule is chosen to symbolize

the volume of all molecular species in the system. Importantly, the last equation em-

phasizes the physical meaning of Lagrange multipliers by relating these values to the
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osmotic pressure that keeps the chemical potential constant at any specific position,

while the number of particles at the same position fluctuates.

Moreover, we obtain the value of the protonation fractions, fH+(i, j, k), by mini-

mizing the free energy with respect to that variable to get the following relation:

fH+(i, j, k)(
1− fH+(i, j, k)

) = φH+(i, j, k)
K0
dφw(i, j, k) (3.29)

where the dissociation equilibrium constant (K0
d) is defined as the negative exponen-

tial of Gibbs free energy in KBT units;

K0
d = exp(−β∆G0) = exp

(
− β(µ0

B + µ0
H+ − µ0

BH+)
)

(3.30)

3.5 Results and Discussion

The system understudy is composed of nine grafted polymers with a polymerization

number of 25. The elementary intra and inter-molecular interactions are set to be

equal to −1 during all calculations (εintra = εinter = −1). We compare the standard

MF approach with the decoupled MF at several thermodynamic temperatures (KBT ),

and separation grafted distance (d) values. The 3D complex system is solved using

KINSOL solver from the SUNDIALS library with the SPGMR interface. In the case

at which we apply the standard MF, we solve the system for one set of unknowns,

which is the solvent volume fraction (φw(i, j, k)). By applying the decoupled MF, we

increase the number of unknowns in the system. These unkowns are as follows:

• Nine sets of the average volume fraction of all polymers in the system accept

the polymer under study, 〈φ∗ii(i, j, k)〉.

• Nine sets of the average inter-molecular interaction of the polymer under study,

〈η∗ii(i, j, k)〉.

• One set of solvent volume fraction, φw(i, j, k).
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Figure 3.8: An illustration of the average volume fraction (〈φp(i, j, k)〉) that is used
to calculate the inter-molecular interactions in the standard MF approach

Figure (3.8) represents the average volume fraction function (〈φp(i, j, k)〉) at k = 8

that is used in the standard MF approach to calculate the inter-molecular interactions

through the following relation:

〈Einter(α)〉 = −εinter2

NP∑
ii=1

∑
i

∑
j

∑
k

〈φp(i, j, k)〉〈φintp (i, j, k)〉

where (〈φintp (i, j, k)〉) is the contact fraction of the same function at point (i, j, k) (see

Section 3.3.2). The system is tested at KBT = 2 and d = 5. One expects a double

counting by multiplying the two functions; the average volume fraction function and

the contact fraction of the same function.

The decoupled MF approach is tested at the same previous parameters. Figures

(3.9), (3.10), and (3.11) represent the average volume fractions (〈φ∗ii(i, j, k)〉) and the

corresponding average inter-molecular interaction functions (〈η∗ii(i, j, k)〉) that is used

to calculate the inter-molecular interactions in the decoupled MF approach for each

polymer in the system. The figures show the eighth layer (k = 8) in the system.

Notice that the polymer itself is not included in the average volume fraction function

〈φ∗ii(i, j, k)〉. The decoupled approach corrects for the double counting that appears in

the standard approach. The decoupled MF inter-molecular interaction is calculated
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by summing the multiplication values of 〈φ∗ii(i, j, k)〉 and 〈η∗ii(i, j, k)〉 for all polymers

in the system.

To track the double counting, we compare the free energy of the standard MF

and the decoupled MF for the same system under symmetrical conditions. Figure

(3.12) shows the free energy values that are calculated with the standard MF and

the decoupled MF at separation distance d = 3, and different KBT values. This

figure represents the double counting that is caused by the standard MF approach.

At low temperature the free energy values that are calculated with standard MF

is more negative, meaning that it has more attractive energy than those calculated

with the decoupled MF. Hence, at low temperature, the chains are more collapsed,

which is causing the system to be more dense. At dense systems the inter-molecular

interactions are dominant. Thus, the double counting effect in the standard MF

approach becomes more distinct. As the thermodynamic temperature of the system

increases, the chains stretch leading to a more relaxed system. At relaxed systems

the inter-molecular interactions are trivial. At low thermodynamic temperature, the

free energy values that are calculated with the standard MF become very close to the

free energy values that are calculated with decoupled MF.

The double counting that is caused by the standard MF approach is expected

to effect the calculated average values in the system, such as the average end-to-

end distance value (〈R〉). At symmetrical condition, we compare the average end-

to-end distance value 〈R〉 for the middle polymer (polymer number 5) using both

approaches at d = 3 and KBT = 1 : 0.5 : 3. Figure (3.13) shows that the end-to-

end distance value that is calculated with the decoupled MF approach is higher than

that calculated with the standard MF approach. As mentioned earlier, the double

counting that is caused by the standard MF causes an increase in the attractive free

energy of the system. This increase in the attractive energy reveal collapsed chains.

Therefore, the 〈R〉 values that are calculated with standard MF approach are less
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than the 〈R〉 values that are calculated with decoupled MF approach. The decoupled

MF approach gives a more accurate values for the average end-to-end distance 〈R〉

as it corrects for the double counting.

Here we use the decoupled MF approach to study how the nine grafted thermo-

responsive polymers interact with each other to form a micelle. We study the effect

of the thermodynamic temperature on the micelle formation when the separation

distance between the grafted polymers is d = 5. Figure (3.14) and (3.15) represent

the average volume fraction of polymer segments at each layer in the system at

KBT = 1. At this low temperature the polymers shrink and the system becomes

very dense. Thus, a rough micellar shape starts to appear at the second layer in the

system. Increasing the thermodynamic temperature causes the UCST polymers to

stretch. Figure (3.16) and (3.17) represent the average volume fraction of polymer

segments at KBT = 3, where a smooth micellar shape appears at the sixth layer with

maximum average volume fraction of 0.07.

One can notice that changing the thermodynamic temperature does not effect

the average volume fraction of polymer segments at the first layer. The first layer

in Figure (3.14) and Figure (3.16) shows the grafted polymer segments for the nine

polymers. Starting from the second layer, one can notice the effect of increasing the

thermodynamic temperature on the average volume fraction of polymer segments.

As the polymers collapse at low temperature such as KBT = 1, Figure (3.15) shows

no monomers after the 12th layer. However, Figure (3.17) shows that at KBT = 3

only the 16th layer has no monomers.

We also study the effect of the separation distance d on the micelle formation at

constant KBT . We notice that the polymers’ separation distance affects the micelle

formation. Figures (3.18) and (3.19) represent the average volume fraction of polymer

segments at KBT = 2 and d = 3 at each layer in the space of the studied system.

In this dense system we see that a smooth micelle starts to appear at the fourth
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layer. This is compared to the smooth micelle that starts to appear at the sixth layer

in a system with KBT = 2 and d = 5 (see Figure (3.20)). However, at the same

thermodynamic temperature and separation distance d = 7 one can see no micelle

formation (see Figure (3.22) and Figure (3.23)).

The micelle formation is affected not only by the thermodynamic temperature,

it is also affected by the separation distance between polymers as well as the length

of polymers. At specific polymers’ length, if the value of the separation distance

between polymers is approximately equal to the average end-to-end distance (〈R〉)

of these polymers, micelle can not form. In order for a set of polymers to form

a micelle, the separation distance between these polymers should be less than the

(〈R〉). Figure (3.13) shows that the studied system contains polymers with average

length (end-to-end distance (〈R〉)) approximately equals to eight cubic lattice sites

at KBT = 2.

In conclusion, the decoupled MF approach corrects the double counting of the

inter-molecular interactions that is caused by the standard MF approach. The double

counting that is caused by the standard MF approach increases in the condense system

at low thermodynamic temperature. The double counting affects the average end-

to-end distance values of the polymers in the system. Accordingly, it may affect the

value of all average variables in the system. This effect is expected to increase in a

more complex system that has electrostatic interactions beside the steric and the van

der Waals interactions.
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Figure 3.9: An illustration of the average volume fraction function 〈φ∗ii(i, j, k)〉 and
the corresponding average inter-molecular interaction functions (〈η∗ii(i, j, k)〉) that is
used to calculate the inter-molecular interactions for polymers (1-3) in the standard
MF approach.
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Figure 3.10: An illustration of the average volume fraction function 〈φ∗ii(i, j, k)〉 and
the corresponding average inter-molecular interaction functions (〈η∗ii(i, j, k)〉) that is
used to calculate the inter-molecular interactions for polymers (4-6) in the standard
MF approach.
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Figure 3.11: An illustration of the average volume fraction function 〈φ∗ii(i, j, k)〉 and
the corresponding average inter-molecular interaction functions (〈η∗ii(i, j, k)〉) that is
used to calculate the inter-molecular interactions for polymers (7-9) in the standard
MF approach.
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Figure 3.12: A diagram represents the Helmholtz free energy for the standard and
the decoupled MF approaches at different KBT values when the separation distance
between the grafted polymers d = 3

Figure 3.13: A diagram represents the end-to-end distance that is calculated with
the standard and the decoupled MF approaches at different KBT values when the
separation distance between grafted polymers d = 3
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Figure 3.14: The average volume fraction of polymer segments at layers (1-8) in the
system at separation distance d = 5 and KBT = 1.
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Figure 3.15: The average volume fraction of polymer segments at layers (9-16) in the
system at separation distance d = 5 and KBT = 1.
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Figure 3.16: The average volume fraction of polymer segments at layers (1-8) in the
system at separation distance d = 5 and KBT = 3.
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Figure 3.17: The average volume fraction of polymer segments at layers (9-16) in the
system at separation distance d = 5 and KBT = 3.
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Figure 3.18: The average volume fraction of polymer segments at layers (1-8) in the
system at separation distance d = 3 and KBT = 2.
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Figure 3.19: The average volume fraction of polymer segments at layers (9-16) in the
system at separation distance d = 3 and KBT = 2.
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Figure 3.20: The average volume fraction of polymer segments at layers (1-8) in the
system at separation distance d = 5 and KBT = 2.
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Figure 3.21: The average volume fraction of polymer segments at layers (9-16) in the
system at separation distance d = 5 and KBT = 2.
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Figure 3.22: The average volume fraction of polymer segments at layers (1-8) in the
system at separation distance d = 7 and KBT = 2.
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Figure 3.23: The average volume fraction of polymer segments at layers (9-16) in the
system at separation distance d = 7 and KBT = 2.
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Chapter 4

Modeling Ligand-Receptors Binding Between

Micelles and Cancer Cells

A variety of interactions between drug delivery devices and local cells and tissues

impact clinical outcomes in terms of both therapeutic action and biological response.

The further development of design objective micelles for drug delivery applications

is associated with understanding the competition of interactions in the system. In

this chapter, we use the mean-field approximation to generalize molecular theories

that determine the competition between electrostatic, van der Waals and steric inter-

actions, thus determining the ligand-receptor binding protocols between the micelle

and the targeted cell.

The micelle is designed to target cancer cells primarily through pH sensitivity and

electrostatic binding. This is made possible by using pH-sensitive polyelectrolytes

that contain functional groups that can dissociate to become positively charged at

low pH [22]. The positive groups on those polymers become attracted to the negative

surface of cancer cell, where the electrostatic binding takes place [11, 6, 10]. At Jilin

University in China, Huang and colleagues have used the previous two principles to

prepare a smart drug delivery system that should enhance tumor therapy and tunable

drug release [21].

Cancer cells and healthy cells have the same kinds of receptors, however some of

these receptors are over-expressed in cancer cells, such as epidermal growth factor

receptors (EGFR) and folate receptors (FR). The developed theories consider the
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influence of different receptor densities on the ligand-receptor binding, however the

molecular reorganization on the surface of the micelle is a design variable that needs to

be considered for enhanced targeting. Micellar size (curvature) is strongly coupled to

the way polymers express ligands to the surface. Several systems of ligand-receptor

binding are modeled to achieve the optimum binding that allows the therapeutic

micelle to release the drug inside the cancer cell through endocytosis (see Figure 4.1).

The molecular theory platform for each system is uniquely suited to address specific

subjects.

(a) Endocytosis Release (b) Degradation Release

Figure 4.1: An illustration of two paths for micellar drug release.

This chapter covers two models of the outer structure of a micelle. Both models

have grafted PEGs as spacers, however, one model has a ligand that is attached to

free end-grafted polybases, and the other model has two ligands that are attached to

free end-grafted polybases (see Figure 4.2). The polybases, or pH sensitive polymers,

should increase the attraction energy between the micelle and the cancer cell, which

has a negatively charge surface. The theory predicts that the competition between

all forces in the system leads to two significant therapeutic states. The shield state

in which collapsed polybases protect the ligands from binding to healthy cells when

the micelle is separated from the cancer cell by distance. The expose state, in which

stretched polybases expose the ligands to bind to specific receptors on the malignant
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cells. The transition between the two states depends on the length and surface cover-

age of the spacers and the polybase-ligands. The ligand-receptor binding is affected

by the receptors density on the cell.

Figure 4.2: An illustration of a micelle with
spacers (blue lines) and polybases (orange
lines) that are attached to ligands (green
rectangles) which are designed to bind to
specific receptors.

4.1 Micelles applications

Nanomedicine technology depends extensively on the creation of smart nanoparticles,

such as micelles. Micelles are fabricated from amphiphilic surfactant 1 molecules that

aggregate in water into spherical vesicles with a hydrophobic core and a hydrophilic

surface. Thus, micelles are usually used to protect hydrophobic drugs, such as dox-

orubicin (DOX) 2, and release them under specific mechanisms. Smart micelles can

respond to external stimuli, such as small changes in temperature, pH, salt concentra-

1Surfactant or surface-active agents are amphiphilic compounds. They contain both hydrophilic
(heads) and hydrophobic (tails) groups, which make them ideal vehicles to protect hydrophobic
drugs.

2DOX is a drug used in chemotherapy to treat cancer. It has very serious side effects leading to
it becoming known as the "red devil".
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tion, or magnetic and electrostatic field [15, 7, 27, 40]. The micellar response to these

external stimuli appears as a change in the conformational structure. This change in

structure causes the micelle to attach to the targeted cell or to release its contents at

the site of action. Smart micelles are developed for drug delivery applications as well

as for biosensing and as molecular imaging tenders [38]. Micelles can be created from

different kinds of polymers to protect their contents from the external environment,

and to increase their capability of binding to the targeted cells [8, 2, 38].

The hydrophobicity of the micellar core combined with the high toxicity of the

hydrophobic anticancer drugs, has inspired biomedical engineers to design micelles as

anticancer drug delivery systems. The micellar design prevents drug leakage and en-

sures the delivery to the cancerous cells. In one study published in the PNAS journal,

a group of researchers report a unique micellar design that delivers an anticancer drug

(cisplatin) to prostate cancer cells[8]. The nanoparticle is made of poly(D,L-lactic-

co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG) that are attached to prostate-

specific membrane antigen (PSMA) targeting aptamers. The specific design ensured

the binding to prostate cancer cells only, and the release of the drug inside the cells

through endocytosis. Another recent study that appears in the Biomaterial journal

reported the usage of antibody-drug congregates (ADCs) for targeted delivery [2].

The ADCs ligands are attached to micelles that are loaded with cytotoxic platinum

drugs for treatment of pancreatic tumors. The study results show an efficient delivery

of the anti-cancer drug, and accordingly a significant suppression in the growth of

the pancreatic malignant cells. A multifunctional micelle has also been developed

by a group of researchers at the University of Texas, Southwestern Medical Center,

at Dallas to target αvβ3-expressing cancer cells, and deliver doxorubicin (DOX) and

MRI-ultrasensitive particles to the tumor [38].

Refining micelles that can target malignant cells at very high concentration com-

pared to the healthy cells in the blood stream, is sufficient motivation for the further
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research and development of smart micelles. However, improving the targeting pro-

ficiency of smart micelles is governed by the choice of polymers that are attracted

to malignant cells only, and ligands that bind to cancer cells through the molecular

recognition of specific cancer markers [35]. Many theoretical works have been done to

understand the ligand-receptor binding properties through the consideration of the

molecular interaction in the biological system [17, 32]. In a recent study published in

the Biomaterials Science journal, Nap and Szleifer found that attaching desired lig-

ands to polybases in a micelle has improved the ligand-overexpressed receptor binding

in cancer cells [37]. The control of the positive charges on the polybases in acidic

environments should improve the targeting of the over-expressed receptors on the

negatively charged cancer cell’s surface [21, 6].

This study uniquely addresses the size of the therapeutic micelle to improve the

targeting to malignant cells. Most malignant treating micelles are synthesized with

ligands that bind to over-expressed receptors on cancer cells such as epidermal growth

factor receptors (EGFR) [35]. EGFRs also exist on healthy cells, however they are

overexposed on cancerous cells, where they are critical for proliferation and survival

of the cell. Controlling the size of the therapeutic micelle is essential to ensure the

binding to the cancer cells while screening the healthy cells. The design of the size

of the therapeutic micelle should take into account the density of the EGFR, or any

other targeted receptor on the targeted cells. In this study, we calculated the optimum

size of micelles created to treat human glioblastoma cells based on the EGFRs density

on those cells [57].

4.2 The Size of The Therapeutic Micelle

The density of the targeted receptors differs significantly between the healthy and

the malignant cells, for example, the density of epidermal growth factor receptors

(EGFR) in malignant cells can be 100 times higher than in normal cells [57]. Figure
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(4.3) (a) illustrates a large micelle that could bind to several EGFRs on a healthy cell.

These several bonds could stabilize the micelle on the healthy cell against the washing

effect of the blood stream. Figure 4.3 (b) illustrates the binding of small micelles to

EGFR on healthy cells. In the case of small micelles, one ligand-receptor bond could

be enough to stabilize the micelle. In this study, we design an efficient therapeutic

micelle with a precise size that allows it to bind to a minimum of two over-expressed

receptors on the cancerous cell (see Figure 4.3 (c)). Increasing the ligand-receptor

attractive binding forces by moderating the size of the micelle triggers an increase of

the binding between micelles and cancer cells. Moderating the micellar size, leads to

an increase of the binding forces that in turn increases the stability of the micelle on

the cancerous cell surface. Thus, the optimum choice of the size of the therapeutic

micelle is critical for efficient treatment.

Figure 4.3: An illustration shows the dependency between the micellar
size and the receptor density on healthy and malignant cells.
a. Large micelle binds to a healthy cell.
b. Small micelles bind to a healthy cell.
c. Therapeutic micelles bind to cancerous cell efficiently.

The proper size of the therapeutic micelle should depend on the density of the

targeted receptors. Consequently, there should be precise therapeutic micelles for a

specific treatment. As an example, epidermal growth factor receptors (EGFR) are

targeted in most cancer treatments [33, 35, 39, 57]. EGFRs are over-expressed on

malignant cells to support the growth and spread of the cancerous cells. The density
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of EGFRs differs on different types of cancerous cells. In Lab on a Chip Journal, a

group of researchers from the University of Texas at Arlington, found experimentally

that human glioblastoma cells (h-GBM) carry a minimum of 1 EGFR per 100nm2

[57]. Accordingly, to design a therapeutic micelle that targets EGFR on h-GBM cells,

the interaction surface area between the micelle and the h-GBM cell should not be

less 100nm2 in size. Doubling the size of the interaction surface area should allow a

minimum of two EGFRs to bind to the therapeutic micelle, which causes an increase

in the binding energy. Increasing the binding energy between the therapeutic micelles

and the cancer cells is favorable to stabilize the micelle on the cancer cell surface,

thus avoiding the washing of these micelles away with the blood stream.

Our innovative design is based on an evaluation of the size of the interaction sur-

face area between the micelle and the cancerous cell. The size of that interaction

surface area should be equal to double the area that holds one of the targeted recep-

tors, such as EGFR on the cancerous cell. Doubling the size of the interaction area

allows a minimum of two ligands on the micelle to bind to receptors on the malignant

cell. Thus, if the density of our targeted receptors is d/nm2, then the interaction

surface area, Ains, is given as Aint = 2/dnm2.

Once the interaction surface area has been determined, the radius of the required

micelle can be calculated. A cross-sectional view of a therapeutic micelle, such as that

shown in figure 4.4, gives us a circular shape. Considering the length of the perimeter

of the computed interaction area (the red line), S =
√
Aint, this circular shape can be

approximated by different polygon shapes. Pentagon, hexagon, and heptagon shapes

were fitted around the micellar cross-section area as shown in Figure (4.4). However,

the side of the pentagon and hexagon shapes were found to be a best fit to describe

a circle with an interaction area equal to S. The radius (yellow line) of a circle inside

a polygon is given by R = S
2 tan( 180

n
) , where n is the number of polygon sides. Using

the previous relation, we found that the average radius calculated by fitting both
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pentagon and hexagon shapes is given by the following relation:

R = 0.777S (4.1)

Correspondingly, the optimum size of the therapeutic micelles for h-GBM cells

that have a minimum of 1 EGFR per 100nm2, and accordingly S ≈ 14nm, is approx-

imately 20nm in diameter.

Figure 4.4: Calculating the size of the ther-
apeutic micelle from the size of the inter-
action area with the targeted cell.

4.3 Modeling The Binding of One Ligand to One Receptor

This model focuses on the micelle-cell interaction surface. Figure 4.5 presents one side

of the therapeutic micelle, which interacts with a cell surface. The micellar surface

carries two different kinds of polymers with a total density of σp, and Nm number of

monomers for each. The polyelectrolyte polymers (represented by the orange lines

in Figure 4.5) are attached to ligands (L) (represented by the green shapes in Figure

4.5). The expression "ligand complexes" is used here to refer to polyelectrolytes that

are attached to ligands. In order to design micelles that target cancer cells only, weak

polyelectrolytes with basic groups were chosen. The basic groups (B) on the ligand
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complexes are able to protonate at low pH in the biological aqueous environment into

positively charged ions (BH+) as follows:

B + H+ Kd−⇀↽− BH+ (4.2)

where Kd is the equilibrium dissociation constant for for the chemical interaction,

which is given by Equation 3.4.1. For weak polyelectrolytes, this dissociation constant

is not fixed, but is affected by the external pH through the following relation:

pKa ≡ − logKd = log
(

[BH+]
[B]

)
+ pH (4.3)

Using a modified form of Henderson-Hasselbalch equation that takes into account

the electrostatic interaction along the chain by an empirical parameter n, one can

write the following equation [5]:

pKa(app) = n log
(

1− α
α

)
+ pH (4.4)

where, α =
(

[B]
[B]+[BH+]

)
. The apparent dissociation constant, pKa(app), relates

the hydrogen ion activity to the molar concentrations of the species involved in the

dissociation reaction.

The positive monomers get attracted to the negatively charged surface of the

cancerous cells, allowing the ligand complexes to stretch [21, 1, 6]. The stretched

ligand complexes expose their ligands to the receptors (R) on the cell surface causing

an increase in the binding probability. The ligand-receptor (LR) binding interaction

can be described by the relation L + R KLR−−⇀↽−− LR, and a binding association constant

KLR−−
[LR]

[L][R] = C exp(−β(µ◦LR − µ◦L − µ◦R)). [L], [R] and [LR] denote the concentra-

tion of the respective molecule, and µ◦ is the standard chemical potential for the

corresponding molecule.

The poly(ethylene glycol) (PEG) polymers that are attached to the micellar sur-

face are used as spacers (represented with blue lines in figure 4.5). The role of these
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spacers is to protect the ligands until they reach the cancerous cells. PEGs are well

known as highly hydrophilic-biocompatible polymers that have also been used as a

non-inflammatory modifier for drugs [23]. The choice of PEG served to increase the

solubility and improve the biocompatibility of the therapeutic micelle.

Figure 4.5: A model illustrating the interaction between the micellar
surface and the targeted cellular surface. The ligand complexes (poly-
electrolytes + ligands) are represented by orange lines, and the spacers
are represented by blue lines.

The cellular surface, which is opposite to the micellar surface (see figure 4.5),

has a density (σR) of the targeted receptors. The fraction of ligands in the system

is given by XL = NL

NL+Ns
, where NL and NS refers to the number of ligands and

spacers respectively. The fraction of bound ligands is fLR = [LR]
[LR]+[L] , where [LR] and

[L] are the concentrations of bound and free ligands respectively [32]. Accordingly,

the concentration per unit area (or the density) of the molecules in the system is as

follows:

• Spacers: [S]
A

= σs = σp(1−XL)

• Free ligand-complexes: [L]
A

= σL = σpXL(1− fLR)
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• Bound ligand-complexes: [LR]
A

= σLR = σpXLfLR

• Free receptors: (σR − σpXLfLR)

The system is modeled in a cubic lattice structure, where each polymer segment or

receptor occupies a single cubic lattice site. The polymers configurational structures

(α) are built randomly using self avoiding random walk (SAW) with Rosenbluth

weighting technique to improve the statistics [43]. The remaining cubic sites are

filled randomly with water and salt ion molecules. All molecules in the system are

subject to different kinds of forces, such as steric, van der Waals and electrostatic

forces.

The cubic lattice model has an incompressibility constraint that maintain the

repulsive steric interactions between all molecules in the system. The mathematical

representation of the constraint is as follows:

〈φs(z)〉+〈φL(z)〉+〈φLR(z)〉+φw(z)+φH+(z)+φOH−(z)+φ+(z)+φ−(z)+φR = 1 (4.5)

Note that the system studies three different polymers: spacers (s), free ligand-

complexes (L), and ligand-complexes that are bound to receptors (LR). Thus, 〈φp(z)〉

is the average volume fraction of polymer p, and φx(z) is the volume fraction of specie

x.

The van der Waals interactions are accounted for in each configuration (α) through

the intra-molecular interactions (Eintra(α)) between segments of one polymer, and

the inter-molecular interactions (Einter(α)) between polymer segments from different

polymers. Below is the mathematical representation for van der Waals interactions

per unit area for all kinds of polymers in the system:

〈Eintra(α)〉 =
∑
p

σp
∑
α

Pp(α)Eintra,p(α)

〈Einter(α)〉 =− εinter
2

∑
p

σp
∑
z

〈φp(z)〉〈ηp(z)〉
(4.6)
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where Pp(α) is the probability of polymer kind p to be at configuration α, and

Eintra,p(α) is the intra molecular interactions of that polymer. 〈φp(z)〉 is the average

volume fraction of polymer p segments at layer z, and 〈ηp(z)〉 is the fraction of

its possible intermolecular interactions at layer z 1.The average volume fraction of

polymer kind p is defined as follows:

〈φp(z)〉 = σp
∑
α

Pp(α)np(α, z)vsol (4.7)

where np(α, z) is the number of polymer segments at layer z, and vsol is the

volume of solvent molecule (vwater = 0.03nm2), which is set to be the volume of each

cubic lattice site with the assumption that all molecules in the system have the same

volume (notice that vp(α, z) = np(α, z)vsol). The values of the elementary short-

ranged molecular-attractive interactions, (εintra and εinter), are chosen carefully so as

not to effect the solubility of the solvent.

The electrostatic interactions between two charged molecules in the system are

influenced by several variables, such as the polymer density (σp), the surface charge

coverage on the cell (σq), the bulk pH, and the local temperature through (KBT ).

These interactions can be noticed on the extension of the ligand complexes. Different

electrostatic interactions cause different configurations and accordingly, different intra

and inter-molecular interactions. The model demonstrates the complexity of the

chemical equilibrium and the physical interactions between all molecules in the system

on the ligand-receptors binding probabilities.

1Notice that here we don’t use the sympol (∗) that we used in Chapter 3 to calculate the
inter-molecular interactions. The 1D system considers the volume fraction and the inter-molecular
interactions of one polymer at different configurations, while the 3D accounts for the volume fraction
and the inter-molecular interactions of a polymer with respect to several grafted polymers at different
configurations.

2We show how we got this number in Appendix (E).
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4.3.1 Theoretical Approach

The system between the micellar and the cell surfaces is discretized into discrete

layers at the XY plane with thickness dz. The model assumes that the system is

homogeneous in planes parallel to the cell surface and the micelle surface (XY ), and

inhomogeneous in the norm direction (Z). The mean field approximation is used to

describe the molecular interactions in the system [50]. The system Helmholtz free

energy per unit area is calculated by taking into account the polymers, electrostatics,

chemical interactions, ion formation and mixture of free energies (F = Fpol + Felc +

Fchem + Fif + Fmix).

The polymers free energy is expressed by its self-energy due to the intra and inter-

molecular interactions between the three kinds of polymers, as well as their confor-

mational entropy (S) 1. The polymers free energy can be expressed mathematically

as follows:
Fpol = Upol + Sp

KB

=
∑
p

[
〈Eintra〉p + 〈Einter〉p + σp

∑
α

Pp(α) lnPp(α)
] (4.8)

where p = {s, L, LR}.

The second term of the system free energy is the electrostatic free energy, which

is defined as follows;

Felec =
∫ 〈ρq(z)〉ψ(z)− 1

2 ε

(
∂ψ(z)
∂z

)2

dz

 (4.9)

where:

• 〈ρq(z)〉 = fH+(z)qp
(
〈ρL(z)〉 + 〈ρLR(z)〉

)
+ ∑

m qmρm(z), where qp is the charge

on the dissociated functional groups of the polyelectrolytes.

1Note that polymers conformational entropy increases dramatically by increasing their polymer-
ization number N (number of monomers
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• 〈ρL(z)〉+ 〈ρLR(z)〉 =σpXL(1− fLR)
∑
α

PL(α)vL(α, z)

+ σpXLfLR
∑
α

PLR(α)vLR(α, z)

• qmρm represents the charge and the volume fraction of the molecular species

other than polymers in the system (H+ −OH– − Na+ − Cl– ).

The third term in the system free energy accounts for the chemical interactions of

all molecules in the system including the ligand-receptor binding interaction, which

can be represented as follows:

Fchem = 1
β

∫
(〈ρL(z)〉+ 〈ρLR(z)〉)

{
fH+(z)[ln fH+(z) + βµ◦BH+ ]

+ (1− fH+(z))[ln(1− fH+(z)) + βµ◦B]
}
dz

+ 1
β

{
σpXL(1− fLR)βµ◦L + σpXLfLRβµ

◦
LR + (σR − σpXLfLR)βµ◦R

} (4.10)

where µ◦m is the standard chemical potential for molecule m, which accounts for

the molecule self-energy. Terms that have the following form (〈ρm(z)〉fn(z)[ln fn(z))

denote the translational entropy of molecule m due to the chemical interaction n.

The fourth term is the ion formation free energy that is produced due to the ion’s

translational entropy. This term is defined as follows:

Fion =
∫

(ρH+(z)µ◦H+ + ρOH−(z)µ◦OH−) dz (4.11)

The last term accounts for the mixture free energy. This term represents the

translational (mixing) entropy for the water molecules, the ions, charged monomers,

ligands, receptors, and bound ligand-receptors. The mixture free energy is represented
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mathematically as follows:

Fmix = −TSmix = 1
β

∫ {
[ρw(z)(ln ρw(z)− 1)] + [ρH+(z)(ln ρH+(z)− 1)]

+[ρOH−(z)(ln ρOH−((z)− 1)] + [ρ+((z)(ln ρ+(z)− 1)]

+[ρ−(z)(ln ρ−(z)− 1)]
}
dz

+ 1
β

{
σp(1−XL) ln(1−XL) + σpXL(1− fLR) ln(1− fLR)

+σpXLfLR ln fLR + (σR − σpXLfLR) ln
(

1− σpXLfLR
σR

)}

(4.12)

By summing all the above free energies in the system, one gets the total free

energy for a semi-grand canonical ensemble as follows:

Ω =βF
A
− β

∑
m

ρmµm

=− β
[σp(1−XL)Ps(α) + σpXL(1− fLR)PL(α) + σpXLfLRPLR(α)

]
Eintra(α)

+ εinter
2

∫
z

(
〈φs(z)〉 〈ηs(z)〉+ 〈φL(z)〉 〈ηL(z)〉+ 〈φLR(z)〉 〈ηLR(z)〉

)
dz


+ σp(1−XL)

∑
α

Ps(α) lnPs(α) + σpXL(1− fLR)
∑
α

PL(α) lnPL(α)

+ σpXL(fLR)
∑
α

PLR(α) lnPLR(α)

+ β
∫ (fH+(z)qp

(
〈ρL(z)〉+ 〈ρLR(z)〉

)
+
∑
m

qmρm(z)
)
ψ(z)− 1

2ε
(
∂ψ(z)
∂z

)2
 dz

+
∫ (
〈ρL(z)〉+ 〈ρLR(z)〉

){
fH+(z)[ln fH+(z) + βµ◦BH+ ]

+ (1− fH+(z))[ln(1− fH+(z)) + βµ◦B]
}
dz

+
{
σp(1−XL) ln(1−XL) + σpXL(1− fLR)[ln(1− fLR) + βµ◦L]

+ σpXLfLR[ln(fLR) + βµ◦LR] + (σR − σpXLfLR)[ln(1− σpXLfLR
σR

) + βµ◦R]
}

+
∫ {

[ρw(z)(ln ρw(z)− 1)] + [ρH+(z)(ln ρH+(z)− 1 + βµ◦H+)]

+ [ρOH−(z)(ln ρOH−(z)− 1 + βµ◦OH−)]

+ [ρ+(z)(ln ρ+(z)− 1− βµ+)] + [ρ−(z)(ln ρ−(z)− 1− βµ−)]
}
dz (4.13)
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The theory describes the system by calculating the most probable configurations

of spacers, free ligand complexes and bound ligand complexes. Note that the fraction

of binding fLR equals zero at all layers accept the final layer on the cell surface, where

the receptors are present. Thus, all terms in the free energy that include σR and/or

fLR are constant, and are not included in the integral over all layers z.

Introducing Lagrange multipliers π(z) with the incompressibility constraint and

minimizing the free energy allows the calculation of the three different probabilities

that describe the system:

• The probability of having a spacer (Ps) at configuration (α).

• The probability of having a free ligand complex (PL) at configuration (α).

• The probability of having a bound ligand complex (PLR) at configuration (α).

These probabilities are given by the following relations:

Ps(α) = WR

qs
exp

− β[Eintra(α) + Einter(α)
]
− β

∫
π(z)vs(α, z) dz

 (4.14)

Pii(α) =WR

qii
exp

− β[Eintra(α) + Einter(α)
]
− β

∫
π(z)vii(α, z) dz

− β
∫
qpψ(z)vii(α, z) dz −

∫
ln fH+(z)vii(α, z) dz

 (4.15)

where, q is the partition function of the corresponding polymer, which satisfies the

condition that ∑α P (α) = 1. The Rosenbluth weighting function (WR) is used to

improve the statistics of all possible polymer configurational structures [43]. The

first two terms in all probabilities account for the intra and inter-molecular inter-

actions between polymer segments 1, where β = 1
KBT

is the inverse thermodynamic

temperature. In the third term of Equation (4.14), vs(α, z) is the volume fraction

1We use the decoupled mean-field approach that we discussed in Chapter 3 to calculate the intra
and the inter-molecular interactions.
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of a spacer that occupies layer z. Similarly, in the third term of Equation (4.15),

vii(α, z) is the volume fraction of a free or a bound ligand that occupies layer z. The

extra two terms in Equation (4.15), account for the electrostatic interactions as this

equation describes the probability of the free and bound ligand complexes that are

made of polybases (see section 4.3). In Equation (4.15), qp is the amount of charge on

a dissolved monomer (see Equation (4.2)), and nii(α, z) is a Kronecker delta function

that equals one if there is a monomer of polymer ii at layer z, and zero otherwise.

ψ(z) is the electric potential at layer z. In the last term of equation (4.15), fH+ is

the protonation fraction, which is given by the following:

fH+(z)
(1− fH+(z)) = φH+(z)

K◦dφw(z) (4.16)

The volume fraction profile of all molecular species in the system is given by the

following relations:

φw(z) = exp(−βπ(z)vw)

φH+(z) = exp(−βµ◦H+ − βπ(z)vw − βqH+ψ(z))

φOH−(z) = exp(−βµ◦OH− − βπ(z)vw − βqOH−ψ(z))

φ+(z) = exp(βµ+ − βπ(z)vw − βq+ψ(z))

φ−(z) = exp(βµ− − βπ(z)vw − βq−ψ(z))

(4.17)

where, µ0
jj, and qjj are the standard chemical potential, and the amount of charge for

specie jj respectively. In this system, we assume that all molecules have the volume

of the solvent molecule (water molecule).

The fraction of ligand-receptor binding is given by the following relation:

fLR
(1− fLR) = C KLR qLR e

qLφR

(
1− σpXLfLR

σR

)
(4.18)

where, qL and qLR are the partition functions for free and bound ligand complexes. C

is the constant in the association constant equation KLR−−Cexp(−β(µ◦LR−µ◦L−µ◦R)),

φR(z) ) is the volume fraction of receptors on the interacting cell surface at specific
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microstate, which can be calculated from the receptor density and the cell-surface

interaction area, and e is the base of the natural logarithm.

We discretize the system into z number of layers with a thickness value around

the third root of the volume of a water molecule 1. The complex non-linear system is

composed of seven sets of unknowns. Three of these unknowns are the average volume

fractions: for spacers, complex ligands, and bound complex ligands
(
〈φs(z)〉, 〈φL(z)〉,

〈φLR(z)〉
)
. Another three unknowns are the fraction of inter-molecular interactions:

for spacers, complex ligands, and bound complex ligands
(
〈ηs(z)〉, 〈ηL(z)〉, 〈ηLR(z)〉

)
.

The final unknown is the electric potential profile (ψ(z)). We use the minimized

free energy Equations (eqs. (4.14) to (4.17)), and Poisson equation to solve for the

seven sets of unknowns. Exterminimizing the free energy with respect to the electric

potential gives Poisson equation in the following form:

∂2ψ(z)
∂z2 = −〈ρq(z)〉

ε
(4.19)

where ε is the permittivity constant of the medium, which we assume to be wa-

ter. 〈ρq(z)〉 is the density of charges in the system, which is given by 〈ρq(z)〉 =

fH+(z)) qp (〈ρL(z)〉+ 〈ρLR(z)〉) +∑
jj qjjρjj(z), where qp is the amount of charge on a

charged polymer segment, while qjj is the amount of charge on a specie jj that has a

density of ρjj(z) at layer z. The electric potential profile is subject to two boundaries:

the charge density on the cell surface σqcell
and the charges on the micellar surface

σqmicelle
, which depends on the number of charged polymer segments that are attached

to that surface.

∂ψ(z)
∂z

=


−σqmicelle

ε
, at z = 1

−σqcell

ε
, at z = L

That can be translated into:

ψ(2)− ψ(1)
∆ = −σqmicelle

ε

1That value is calculated in Appendix E.
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ψ(L− 1)− ψ(L)
∆ = −σqcell

ε

where, z = 1 and z = L are our boundaries, and z = 2 and z = L − 1 are the first

layers encountered as we move toward the middle of the system.

We solve the Poisson equation by calculating the number of charged monomers on

both the micellar surface and the cell surface. The cell surface has additional charge

due to the density of charge on the cell. The system is solved twice. Firstly, to find

the number of monomers on the cell, and secondly to use these inputs to solve for

the Poisson equation.

4.4 Modeling The Binding of A Dual Ligand

The dual ligand technique has been used to enhance nanocarrier targeting and to

spare healthy cells [45, 53, 28]. Tumor and healthy cells have the same receptors on

their surfaces, but some of these receptors are over-expressed in cancer cells, such

as epidermal growth factor receptors (EGFR) and folate receptors (FR). Designing

a drug nanocarrier (micelle) with a ligand that binds to two or more kinds of over-

expressed receptors should improve tumor cells targeting.

This section covers the model of one ligand binding to two different receptors.

Figure 4.6 shows the interaction area between the micelle and the targeted cell. The

cell surface has two over-expressed targeted receptors (R1, R2), with densities of σR1 ,

and σR2) respectively. The micellar surface has two different kinds of polymers with

Nm number of monomers for each and a total density of σp. Spacer polymers are

represented by the blue lines in Figure 4.6. Basic polyelectrolytes have two attached

ligands to target two different receptors and are represented by purple lines in Figure

(4.6).

The expression "ligand complex" will be used here to represent the polyelectrolyte

that is attached to a dual-ligand. Similar to the previous model, the basic groups on

the ligand complexes are able to dissolve in the biological aqueous environment to
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Figure 4.6: A model illustrating the interaction between dual-ligand
complexes (polyelectrolytes + dual-ligand) at the micellar surface and
the targeted receptors on the cellular surface.

form positively charged ions B + H+ Kd−⇀↽− BH+ where Kd is the dissociation constant

for the chemical interaction. As the ligand complexes stretch they expose their ligands

to the two different receptors (R1, R2) on the cell surface causing an increase in the

binding probability. The ligands-receptors (LR1, LR2) binding interaction can be

described by the following relations:

L + R1
KLR1−−−⇀↽−−− LR1 and L + R2

KLR2−−−⇀↽−−− LR2

where KLR1 and KLR2 are the association constants for these chemical reactions. The

two association constants are defined as follows:

KLR1
−−

[LR1]
[L][R1] = C exp(−β(µ◦LR1 − µ

◦
L − µ◦R1))

KLR2
−−

[LR2]
[L][R2] = C exp(−β(µ◦LR2 − µ

◦
L − µ◦R2))

(4.20)

The fraction of ligands in the system is given by XL = NL

NL+Ns
, where NL and

NS refer to the number of ligands and spacers respectively. The fraction of bound
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dual-ligands to receptors R1 and R2 is given by the following relations:

fLR1 = [LR1]
[LR1] + [LR2] + [L] and fLR2 = [LR2]

[LR1] + [LR2] + [L]

where [LR1], [LR2] and [L] are the concentrations of bound ligand to receptors (R1, R2),

and free ligands respectively. The density of all molecules in the system is given as

follows:

• Spacers: σs = σp(1−XL)

• Free ligands: σL = XLσp(1− fLR1 − fLR2)

• Bound ligands, or bound receptors: σLR1 + σLR2 = σpXL(fLR1 + fLR2)

• Unbound receptors: (σR1 − σpXLfLR1) + (σR2 − σpXLfLR2)

Similar to the previous model, this system is modeled in a cubic lattice structure

with a coordination number of six. Each polymer segment or receptor molecule

occupies a single cubic lattice site. Polymer conformational structures (α) are built

randomly using a self avoiding random walk (SAW) with the Rosenbluths weighting

technique to improve the statistics (see Chapter 2). The remaining cubic sites are

filled randomly with water and salt ion molecules. All molecules in the system are

subject to different kinds of forces, such as steric, van der Waals and electrostatic

forces.

An incompressibility constraint is applied to maintain the repulsive steric inter-

actions between all molecules in the system. The mathematical representation of the

constraint is as follows:

〈φs(z)〉+ 〈φL(z)〉+ 〈φLR1(z)〉+ 〈φLR2(z)〉

+ φw(z) + φH+(z) + φOH−(z) + φ+(z) + φ−(z) + φR = 1
(4.21)

Note that the system studies four different polymers; spacers (s), free ligand-complexes

(L), and ligand-complexes that are bound to receptors (LR1 and LR1). Thus, 〈φp(z)〉

93



www.manaraa.com

is the average volume fraction of polymer p, and φx(z) is the volume fraction of specie

x.

The van der Waals interactions are accounted for in each configuration (α) through

the intra-molecular interactions (Eintra(α)) between segments of one polymer, and

the inter-molecular interactions (Einter(α)) between polymer segments from different

polymers. The values of these two short-ranged molecular-attractive interactions,

(εintra and εinter), depend on the choice of polymers in the system and their interac-

tion with the solvent. Moreover, the electrostatic interactions between two charged

molecules in the system are influenced by several variables, such as: the polymer

density (σp), the surface charge coverage on the cell (σq), the bulk pH, and the

local temperature through (KBT ). We study the effect of those variables on the ex-

tension of the ligands complexes. Different electrostatic interactions cause different

configurations and accordingly, different intra and inter-molecular interactions. The

model demonstrates the complexity of the chemical equilibrium and the physical in-

teractions between all molecules in the system on the two different ligand-receptor

bindings probabilities (PLR1 and PLR2).

4.4.1 Theoretical Approach

Similar to the previous model, the space between the micelle and the cell surfaces is

discretized into discrete layers in the XY plane with thickness dz. The system is as-

sumed to be homogeneous in planes parallel to the cell surface and the micelle surface

(XY ), and inhomogeneous in the norm direction (Z). The molecular interactions are

described in the system through the mean field approximation. The Helmholtz free

energy per unit area for the system has a similar form to the Helmholtz free energy

in the previous model.

(F = Fpol + Felc + Fchem + Fif + Fmix)
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The system Helmholtz free energy considers the polymer, electrostatic, chemical in-

teraction, ion formation and mixture free energies. However, the chemical and the

mixture free energies in this system account for the standard chemical potential (self-

energy) for the two kinds of ligand- receptor bindings (µ◦LR1 , µ
◦
LR2), as well as the

translational entropy due to those two interactions.

Polymers self-energy due to the intra and inter-molecular interactions between

the three kinds of polymers, as well as their conformational entropy (S) are added to

calculate the polymers free energy. Polymers free energy mathematical expression is

given in Equation 4.8 but in this case p = {s, L, LR1, LR2}.

The second term of the system free energy is the electrostatic free energy (see

Equation 4.9), where in this model:

• 〈ρq(z)〉 = fH+(z)qp(〈ρL(z)〉 + 〈ρLR1(z)〉) + 〈ρLR2(z)〉) + ∑
m qmρm(z), where qp

is the charge on the dissociated functional groups of the polyelectrolytes.

•
(
〈ρL(z)〉+ 〈ρLR1(z)〉+ 〈ρLR2(z)〉

)
= σpXL(1− fLR1 − fLR2)∑α PL(α)vL(α, z)

+σpXLfLR1

∑
α PLR1(α)vLR1(α, z) + σpXLfLR2

∑
α PLR2(α)vLR2(α, z)

• qmρm represents the charge and the volume fraction of the molecular species

other than polymers in the system (H+ −OH– − Na+ − Cl– ).

The third term in the system free energy accounts for the chemical interactions

of all molecules in the system including the two kinds of ligand-receptor binding

interactions, which can be represented as follows:

Fchem = 1
β

∫
(〈ρL(z)〉+ 〈ρLR(z)〉)

{
fH+(z)[ln fH+(z) + βµ◦BH+ ]

+ (1− fH+(z))[ln(1− fH+(z)) + βµ◦B]
}
dz

+ 1
β

{
σpXL(1− fLR1 − fLR2)βµ◦L + σpXLfLR1βµ

◦
LR1 + σpXLfLR2βµ

◦
LR2

+ (σR1 − σpXLfLR1)βµ◦R1 + (σR2 − σpXLfLR2)βµ◦R2

}
(4.22)
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where µ◦m is the standard chemical potential for molecule m, which accounts for

the molecule self-energy. Terms that have the following form (〈ρm(z)〉fn(z)[ln fn(z))

denote the translational entropy of molecule m due to the chemical interaction n.

The ion formation free energy term in this system is exactly the same as in the

previous system (see Equation (4.11)). The last free energy term accounts for the

mixture free energy. This term represents the translational (mixing) entropy for all

molecules in the system, and it is represented mathematically as follows:

Fmix = −TSmix = 1
β

∫ {
[ρw(z)(ln ρw(z)− 1)] + [ρH+(z)(ln ρH+(z)− 1)]

+[ρOH−(z)(ln ρOH−((z)− 1)] + [ρ+((z)(ln ρ+(z)− 1)]

+[ρ−(z)(ln ρ−(z)− 1)]
}
dz

+ 1
β

{
σp(1−XL) ln(1−XL)

+σpXL(1− fLR1 − fLR2) ln(1− fLR1 − fLR2)

+σpXLfLR1 ln fLR1 + (σR1 − σpXLfLR1) ln
(

1− σpXLfLR1

σR1

)

+σpXLfLR2 ln fLR2 + (σR2 − σpXLfLR2) ln
(

1− σpXLfLR2

σR2

)}
(4.23)

By summing all the above free energies in the system, one gets the total free

energy for a semi-grand canonical ensemble as follows:

Ω =βF
A
− β

∑
m

ρmµm

=− β
[σp(1−XL)Ps(α) + σpXL(1−

2∑
i=1

fLRi
)PL(α)

+ σpXL

( 2∑
i=1

fLRi
PLRi

(α)
)]
Eintra(α)

+ εinter
2

∫
z

(
〈φs(z)〉 〈ηs(z)〉+ 〈φL(z)〉 〈ηL(z)〉+

2∑
i=1
〈φLRi

(z)〉 〈ηLRi
(z)〉

)
dz


+ σp(1−XL)

∑
α

Ps(α) lnPs(α) + σpXL(1−
2∑
i=1

fLRi
)
∑
α

PL(α) lnPL(α)

96



www.manaraa.com

+ σpXL

( 2∑
i=1

fLRi

∑
α

PLRi
(α) lnPLRi

(α)
)

+ β
∫ [(

f+H(z)qp
(
〈ρL(z)〉+

( 2∑
i=1

fLRi
〈ρLRi

(z)〉
))

+
∑
m

qmρm(z)
)
ψ(z)

− 1
2ε
(
∂ψ(z)
∂z

)2 ]
dz

+
∫ (
〈ρL(z)〉+

2∑
i=1

fLRi
〈ρLRi

(z)〉
){
fH+(z)[ln fH+(z) + βµ◦BH+ ]

+ (1− fH+(z))[ln(1− fH+(z)) + βµ◦B]
}
dz

+
{
σp(1−XL) ln(1−XL) + σpXL(1−

2∑
i=1

fLRi
)[ln(1−

2∑
i=1

fLRi
) + βµ◦L]

+
2∑
i=1

σpXLfLRi
[ln(fLRi

) + βµ◦LRi
]

+
2∑
i=1

(σRi
− σpXLfLRi

)[ln(1− σpXLfLRi

σRi

) + βµ◦Ri
]
}

+
∫ {

[ρw(z)(ln ρw(z)− 1)] + [ρH+(z)(ln ρH+(z)− 1 + βµ◦H+)]

+ [ρOH−(z)(ln ρOH−(z)− 1 + βµ◦OH−)]

+ [ρ+(z)(ln ρ+(z)− 1− βµ+)] + [ρ−(z)(ln ρ−(z)− 1− βµ−)]
}
dz (4.24)

The developed theory describes the interaction between the micelle and the cell

surface with a single, dual, or even treble and higher ligand functionality. In this

model, the constant term increases as the number of ligand functionality increases.

Having a dual ligand with two fractions of binding to two different receptors causes an

increase in the attractive energy. However, this increase on the binding energy should

not affect the probability of having a specific polymer at a specific configuration as

you will see below.

The system is described by calculating the most probable configurations of spacers,

free ligand complexes and any set of bound ligand complexes. Introducing Lagrange

multipliers π(z) with the incompressibility constraint, then minimizing the free energy

allows calculation of the three different probabilities that describes the system:
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• The probability of having a spacer (Ps) at specific configuration (α) 1.

• The probability of having a free ligand complex (PL) at configuration (α).

• The probability of having any set of bound ligand complex (PLRi
) at configu-

ration (α), where i represents the number of the ligand receptor set.

The probabilities are given by the same relations as described in the single ligand

model through equations 4.14 and 4.15, where in this case, ii = {L,LRi}, and q is

the partition function of the corresponding polymer, which satisfies that∑α P (α) = 1.

Notice that the probabilities in this system look similar to the probabilities in the

previous system (see Equations (4.14), (4.15)), however the number of probabilities

that are needed to describe the system should increase as the set of ligand-receptors

increases in the model. This shows that the probability of having a spacer, ligand

or bound ligand complex at a specific configuration is only effected by the steric,

van der Waals, and electrostatic interactions, which are treated similarly in both

systems. The only difference in this system, compared to the previous model, is that

the binding energy increases dramatically at the last layer near the cell surface. This

increase on the binding energy should effect the cell surface curvature, which should

increase the probability of endocytosis. This could be a future topic in studying

micelles as drug delivery devices.

The protonation fraction, and the volume fraction of all molecular species in the

system are exactly as described in equations 4.16 and 4.17.

The general equation for the fraction of set of ligand-receptor binding is given by

the following relation:

fLRi

(1−∑2
i=1 fLRi

)
= C KLRi

qLRi
e

qLφRi

(
1− σpXLfLRi

σRi

)
(4.25)

1Notice that the spacers probability in this system is similar to Ps in the previous system since
this probability is not effected by the fraction of binding.
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where, qL is the partition function for free ligand complexes and qLRi
is the partition

function for the set i of bound ligand complexes. C is the association constant in the

equation KLRi
−−Cexp(−β(µ◦LRi − µ

◦
L − µ◦Ri)), φRi

is the volume fraction of receptors

on the interacting cell surface at a specific microstate, which can be calculated by

knowing the receptor density and the cell-surface interaction area, and e is the base

of the natural logarithm.

The system is solved numerically by discretizing the system into z number of layers

with thickness of 0.33nm. This complex non-linear system is composed of nine sets

of unknowns. There are four unknown average volume fractions: for spacers, com-

plex ligands, and two sets of bound complex ligands
(
〈φs(z)〉, 〈φL(z)〉, 〈φLR1(z)〉,

〈φLR2(z)〉
)
. Another four unknowns are the fraction of inter-molecular interactions:

for spacers, complex ligands, and two sets of bound complex ligands
(
〈ηs(z)〉, 〈ηL(z)〉,

〈ηLR1(z)〉, 〈ηLR2(z)〉
)
. The electric potential profile (ψ(z)) is the last unknown. We

use the minimized free energy equations (eqs. (4.14) to (4.17)), and Poisson’s equa-

tion to solve for the nine sets of unknowns. We exterminimize the free energy with

respect to the electric potential to solve for the electric potential ψ(z) with the same

boundary conditions as in the previous model. The same assumptions of different

charge densities on the cell surface, and precise charge on the micellar surface are

used to solve for the electric potential.

4.5 Results and Discussion

This section will be divided into two sections to discuss the previous two models:

4.5.1 The Results of The Binding of One Ligand to One Receptor

We design our model in a cubic lattice system and discretize the space into layers

in the XY plane and set the thickness of the layers to be equal to 0.33nm for all

calculations. The system contains three different kinds of polymer chains, each con-
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sisting of 25 monomers. The salt concentration is maintained at 0.1molar during

all calculations. We started by testing the incompressibility constraint of the system

where the cell surface is far away from the micellar surface. At this state the frac-

tion of ligands bound to receptors is zero. For this test we set the system pH = 7,

σp = 0.3/nm2, XL = 0.4, and the number of layers between the micellar surface and

the cell (L = 30). Figure (4.7) shows the volume fraction of water molecules, spacers

and complex ligand segments at each layer of the system. The sum of all molecules

at each layer is equal to one. At layers that are far away from the micellar surface,

we see that the volume fraction of water molecules is always equal to one.
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Figure 4.7: An illustration of the incom-
pressibility constraint.

We studied the electric potential profile for the system (ψ(z)). Figure (4.8) shows

the electric potential profile in three different criterial. The first criterion is when

there is no charge on the surface of the cell. We notice that the electric potential

profile decreases smoothly from a positive electric potential value due to the positively

charged polyelectrolyte segments on the micellar surface to reach zero at the cell. This

criterion is similar to the electric potential profile in the limit of z → ∞, where it

converged asymptotically to zero.
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Figure 4.8: The electric potential profile
for the same density of grafted polyelec-
trolytes and different charges on the sur-
face of the targeted cell.

The second and the third criterial illustrate a positive and a negative charge on

the cell surface respectively. In both cases, the electric potential profile shows at first

an asymptotic converge to zero at the middle layers where there are no polyelectrolyte

segments (ligand-complexes), and where the charge on the cell surface has no effect

at these layers. This zero domain represents the bulk in the system and is affected

by the distance between the micelle surface and the cell surface (see figure (4.9)). In

the case of the positively charged cell surface, the electric potential passes the zero

domain to increase as it approaches the cell surface. In the other case, where the cell

surface is negatively charged, we see that the zero domain is followed by a decrease

in the electric potential as it approaches the negatively charged cell surface.

Notice that when the separation distance between the micelle surface and the cell

surface is about ten layers, there is no zero domain. Meaning that at this distance

there is no bulk in the system. The ten layers distance is the distance at which the

ligand-receptor bindings appear, which is the system understudy. It is important

to realize that the system under study has no bulk properties. Thus, the pH bulk
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value and the values of the standard chemical potentials in the system will always

be affected by the pKa of the ligand-complexes, the salt concentration as well as the

charge on the cell surface.
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Figure 4.9: The zero domain at the electric potential profile for
both negatively and positively charged cell surface is effected by the
distance between the micelle and the cell.

The ligand-receptor binding is effected by several environmental parameters, such

as the local temperature, local pH, the cell surface charge and the density of receptors

on the cell. The ligand-receptor binding is also affected by several engineered param-

eters, such as the density of ligands on the micelle, the choice of polyelectrolytes,

which is influenced by the pKa value and the elementary attractive molecular en-

ergy (εintra, εinter). We will study the effect of each parameter on the elongation of

the ligand complexes (polyelectrolytes that are attached to ligands) or their average

volume.

Local temperature: To design polymers that stretch at high temperature, we choose

UCST polymers. Both spacers (thermo-responsive polymers) and ligand com-

plexes (polyelectrolytes) stretch at high local temperatures. We vary the KBT

values between 4 and 1, while keeping the elementary molecular attractive inter-

action (εintra, εinter) at −1 value. Notice that the change in KBT value causes a
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change in the elementary molecular attractive interaction values. Figure(4.10)

shows the effect of increasing the temperature, by increasing the KBT values,

on the end-to-end distance of the polymer. Notice that ligand length is slightly

above the length of the spacers. The charged polymer segments on the ligand

create repulsive interactions between them, which causes the polymer to expand

in length.
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Figure 4.10: The effect of the temperature
on the length of micelle spacers and lig-
ands.

Local pH: The effect of local pH on the polymer length is subject to the polyelec-

trolyte’s pKa value. We calculate the end-to-end distance of the ligands at

different pKas while keeping the cell away from the micelle (L = 25). Accord-

ingly, we neglect the charge on the cell surface (qcell = 0). In these calculations,

we set the polymers’ density (σp = 0.3/nm2), the fraction of ligands (XL = 0.4),

KT = 3 and T = 37◦C .

Figure (4.11) shows the behavior of polyelectrolytes with different pKas at sev-

eral local pH values. This plot can be used as a design guideline to choose

specific polyelectrolytes that can target cells with precise local pH as well as
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the cases at which the chemical potential values differ from the bulk chemi-

cal potential. Changing the polymer density can shift this plot. Figure (4.12)

shows the influence of changing the polymer’s density on the length of ligand

complexes at local pH = 7 and cell surface charge. At σp = 0.2 the system

couldn’t solve for polyelectrolytes with pKa above nine.
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Figure 4.11: The effect of both the local pH
and the polyelectrolyte pKa on the ligands
length.

Cell surface charge: The effect of cell charge on the length of ligands is tested at a

distance of 10 layers between the micellar surface and the cell surface (L = 10).

We vary the charges on the cell between (−0.12 - 0.12), choose (σp = 0.1) and

(XL = 0.4). Figure (4.13) shows different elongation behaviors at different local

pH values. There is almost no charge effect on weak base-polyelectrolyte end-

to-end distance. These weak polybases have a pKa = 3 and 5. However, in

strong polybases with pKa = 9 and 11, we see a slight increase in the ligand’s

end-to-end distance. Polybases with pKa = 7 shows an interesting behavior.

Their end-to-end distance increases dramatically at negative cell surface charge,

and decreases rapidly at cell charge above +0.09e/nm2.
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Figure 4.12: Different polymers density
can shift the pKa - pH plots.
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Figure 4.13: The effect of both the local pH
and the polyelectrolyte pKa on the ligands
length.

We plot the volume fraction of spacers 〈φs(z)〉, ligands 〈φL(z)〉, charged ligands

〈φL+(z)〉, sodium ions 〈φNa(z)〉, and chloride ions 〈φCl(z)〉 at three cell surface

charge values (−0.12, 0.0,+0.12) and three pKa values (3, 7, 11), to understand

the system’s behavior (see Figure (4.14)). At pKa = 3, the number of chloride
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ions is very low at the micellar surface at all three different charges. It increases

slightly when it reaches the positively charged cell surface. Conversely, the

sodium ions show the opposite behavior. In this environment, the amount of

charged ligands is almost zero.

At pKa = 7, we see an increase in the number of chloride ions at the micellar

surface. This number decreases rapidly near the cell surface. The number of

chloride ions slightly decreases or increases at the negatively charged surface and

the positively charged surface respectively. The uncharged cell surface shows

no change in the number of chloride ions near the cell. In this environment, the

number of charged ligand complexes at the middle layer is about 25% the total

amount of ligands. Some charged and uncharged ligand complexes extend to

reach the cell surface. The present of the extended ligand complexes near the

cell surface increases the chance of ligand-receptor bindings. In this system, the

sodium ions don’t show significant behavior.

At pKa = 11, the three plots for the different cell surface charge show a sharp

decrease in the total average volume fraction of monomers in the system. The

total average volume fraction of monomers in the system is a conserved value

that is giving by the following relation:

∑
z

〈φs(z)〉 = σp ∗Nmon ∗∆z

where, σp is in 1/nm2 units, and ∆z is the thickness of each layer z in nm units.

The sharp decrease in the number of monomers in the system is a sign of a

significant problem on the inputs. One of the most important inputs that could

effect the average volume fraction values is the chemical potential values (see

Equation (4.17) ). While discussing Figure (4.8) and Figure (4.9), we mentioned

that at ten layers separation distance between the micelle and the cell there is no
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Figure 4.14: The average volume fraction of all molecules in the system at several
cell surface charge values.

bulk behavior. Thus, the chemical potential values for the salt ions, hydrogen

ions and the hydroxyl ions are different than what is calculated at the bulk.

The chemical potential values are effected by the system pH as well as the pKa

values of the ligand complexes. Figure (4.14) shows that pKa = 11 have a sig-

nificant effect on the chemical potential values. Thus, we changed the chemical

potential values until we reached the values at which the average volume fraction

of monomers is conserved in the system. At pH = 7, we found the the average

volume fraction of monomers is conserved at exp(−βµ−) = exp(−βµ+) = 0.075

and exp(−βµH+) = exp(−βµOH−) = 1× 10−9.
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Figure 4.15: Choosing the right chemical potential values to represent the average
volume fraction of all molecules in the system at several cell surface charge values for
pKa = 11.

Figure (4.15) shows that the chloride ions reach a very high average volume

fraction (〈φCl(z)〉 ≈ 0.7). This huge accumulation of the chloride ions adjusts

for the extremely positively charged ligand complexes. Chloride ions show the

same previous behavior near the cell surface. Interestingly, the system has al-

most no uncharged ligand complexes. The fraction of charged monomers is

about 0.999 at all layers. The charged ligand complexes accumulate on the

negatively charged cell surface to increase the probability of binding. The av-

erage volume fraction of ligand complexes at the uncharged and the positively

charged cell surface is less than what we see near the negatively charged cell

surface. At the positively charged cell surface we see an accumulation of the

negatively chloride ions to neutralize the charge on the cell and to allow the

positively charged ligand complexes to bind to the cell receptors.

Fraction of binding: Our theory indicates that the fraction of binding is affected

by the density of receptors in the cell. We study the volume fraction of ligands

complexes with pKa = 5 at local pH = 5.5, polymers density= 0.1/nm2, XL =

0.4, KT = 3, T = 39◦ C and cell surface charge = 0. The fraction of binding

(fLR) is chosen to vary between (0.1, 0.5, 0.9). Figure (4.16) represents the

108



www.manaraa.com

decrease in the amount of ligands as it reaches the cell surface and and increase

on the amount of bound ligands. As expected, when the amount of receptors

increases, which leads to an increase on the fraction of binding, the number of

bound ligands increases.
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Figure 4.16: The effect of the fraction of binding on the
volume fraction of ligands and bound ligands.

Density of ligands: Here we study the effect of ligand density on the number of

bound ligands. We set the parameters as they were for studying the effect of

the fraction of binding, and set the fraction of binding to be equal to 0.7. Then,

we vary the fraction of receptors XL between (0.2, 0.4, 0.8). Figure (4.17) shows

that increasing the fraction of ligands on the micelle, increases the amount of

bound ligands. However, this should effect the amount of receptors on the

cell. One should be careful with decreasing the amount of receptors as their

biocompatible properties help with releasing the drug inside the cell. They also

can protect the charged ligand complexes.
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Figure 4.17: The effect of the fraction of ligands on the
volume fraction of ligands and bound ligands.
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Finally, the developed theory considers van der Waals, steric, and electrostatic

interactions between all molecules at each layer of our dense system. These inter-

actions could vary due to different stimuli in the system, such as pH, pKB, T and

charge density, as well as different micellar designs, such as the choice of polyelec-

trolytes pKa, elementary molecular interactions (εintra, εinter), the fraction of ligands

and the density of polymers. The coupling between these different interactions op-

timizes different structures of the ligand complexes, and different molecular volume

fractions. The system reduces the attractive and the repulsive interactions through

several mechanisms. Ligand receptors elongation helps in stabilizing the system in

some cases. However, chloride ions play a significant role in neutralizing the sys-

tem. Also, our theory shows the effect of receptor density on the number fraction of

complex ligands that bind to the targeted receptors on the cell.

4.5.2 The Results of The Dual-Ligand Binding Technique

The system is modeled in a cubic lattice structure and discretized into layers in the

XY plane. The thickness of the layers is set to be equal to 0.33nm for all calculations.

The system contains four different kinds of polymer chains each consisting of 25

monomers. The salt concentration is maintained at 0.1molar during all calculations.

As mentioned in the previous section, this system composed of nine sets of unknowns.

The nonlinear system is solved using KINSOL solver from the SUNDIALS library with

SPGMR interface.

The system’s solution is tested first by plotting the incompressibility constraint,

and Figure (4.18) illustrates the validation of the constraint. The plot shows that

summing the volume fraction of all molecules in the system at each layer z goes to

one. Notice that at a distance from the cell, the average volume fraction of all free

ions in the system (φ+, φ−, φH+ , φOH−) approaches zero. The incompressibility is

tested at the following dependent variables: the polymer density (σp = 0.3/nm2),
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Figure 4.18: An illustration of the incompressibility constraint.

the separation distance (L = 25), the fraction of ligand complexes (XL = 0.4), their

pKa = 6, KBT = 3.0, the local temperature (T = 37◦C) and the local pH = 7.

Because of the complexity of the system and the large number of unknowns, we

also tested the solver by looking at the electric potential profile. Here we tested the

system with previous inputs in two cases. When the micelle is at a distance from

the charged cell surface (σqCell
= −0.12, and + 0.12) at which we expect the electric

potential to reach a zero domain between the two charged surfaces (the micellar

surface is charged due to the charged grafted monomers on its surface). The second

case is when the charged cell surface is close to the micellar surface (L = 10) at which

we don’t see the zero domain in the middle of the system. Figure (4.19) validated

the expected behavior for the electric potential profile.

The dual-ligand technique is expected to improve the binding efficiency and selec-

tivity. Here we will compare the number of bound ligands in the case of two different

mono-ligands and a dual-ligand. In Figure (4.20), we see the average volume fraction

of: bound receptors to mono-ligand (L1), bound receptors to mono-ligand (L2), total

bound receptors to both mono-ligands (L1 + L2), and those bound to dual-ligand

(L12) at two different pKa values (3 and 5). The dependent parameter for these re-
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Figure 4.19: The effect of the distance between the micellar surface and the cell
surface on the electric potential profile.

sults are chosen to be as follows: (σp = 0.3/nm2, XL = 0.4, L = 8, σq = −0.06, pH =

5.5, KBT = 3.5, T = 39◦C). These parameters are chosen carefully depending on

the cancer cell properties and the system behavior that we learned from our previous

mono-ligand micelle model (see section4.5.1). According to Equation (4.4.1) there

is a precise range of the fraction of ligand-receptor binding for different choices of

polymer density and fraction of ligands at which the
(

1− σpXLfLRi

σRi

)
value has to

be positive. For this system, and with receptors density reaches up to 0.011, the

maximum fraction of bound receptors is 0.08.

Figure (4.20) has three diagrams each representing two different fractions of bind-

ing for two pKa groups. In the first diagram, and for each group: the first column

is the average volume fraction of a mono-ligand with fLR = 0.03, the second is the

average volume fraction of a mono-ligand with fLR = 0.05, the third column is the

sum of the average volume fractions of the two previous columns, and the last is the

average volume fraction of a dual-bound ligand that has a fraction of binding of 0.03

to the first targeted receptor and 0.05 to the second targeted receptor. The same

applied to the other two diagrams with different fraction of binding values.

1As a group of researchers from the University of Texas at Arlington found experimentally that
human glioblastoma cells (h-GBM) carry a minimum of 1 EGFR per 100nm2 [57]
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Figure 4.20: The efficiency of the dual-ligand technique and the effect of the pKa

values on the average volume fraction of binding.

Notice that the average volume fraction of a dual-ligand always exceeds the sum of

the average volume fraction values of two mono-ligands that have the same fractions

of binding as the dual-ligand. Since the dual-ligand has the affinity to bind to two

receptors on the cell surface, its chance of binding should be higher than a mono-

ligand that has an affinity to only one receptor on the cell surface. Thus, the dual-

ligand technique seems to improve the binding efficiency. Figure (4.20) shows that the

binding efficiency depends on the polyelectrolyte pKa value. We see more binding at

pKa = 3 than at pKa = 5. However, we know from the previous results (see Figure

(4.14) and Figure (4.15)) that the ligand complexes should stretch at higher pKa

values, when the local pH of the system is at seven and the separation distance is

about ten layers.

pKa ↓→ BH+ ↓ pH=7=====⇒
10 layers

Collapsed chains

pKa ↑→ BH+ ↑ pH=7=====⇒
10 layers

Steretch chains

We also know that these results are effected by the choice of the local pH and the

separation distance, which both are effecting the chemical potential values in the

system.

To study the dual-ligand design selectivity, we set the micelle dependent param-

eters at: (σp = 0.3/nm2, XL = 0.4, L = 8, pKa = 3, 4, 5, 6). For each pKa value we
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calculated the average volume fraction of bound dual-ligands for three different cases:

cancerous cell with dependent parameters (σq = −0.06, pH = 5.5, KBT = 3.5, T =

39◦C, σR1 = σR2 = 0.01) 1, healthy cell with the same density of receptors as the

cancer cell (σq = −0.02, pH = 7, KBT = 3.0, T = 37◦C, σR1 = σR2 = 0.01), and

healthy cell with 10% lower receptor density than the cancer cell (σq = −0.02, pH =

7, KBT = 3.0, T = 37◦C, σR1 = σR2 = 0.001).
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Figure 4.21: The digram shows that the dual-ligand selectivity depends on the density
of receptors on the surface of the cell.

Figure(4.21) shows that at low pKa values (pKa = 3, 4), changing the local en-

vironment from cancerous to healthy cell environment decreases the average volume

fraction of bound dual-ligands slightly if the amount of receptors on both cells are

the same. The case of low pKa values and separation distance of eight layers can be

represented as follows:

At cancer cell: pH ↓ → H+ ↑ ⇒ BH+ ↑ ⇒ Steretched chains

At healthy cell: pH ↑ → H+ ↓ ⇒ BH+ ↓ ⇒ Collapseed chains

However, increasing the pKa values showing an unexpected results. At pKa = 5

the average volume fraction of bound dual-ligands increases at healthy cell environ-

1The maximum fraction of binding for these inputs and according to Equation (4.4.1) is fLR1 =
fLR2 = 0.08, and we choose it to be equal to 0.07
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ment. At pKa values higher than 6, we see no binding to receptors on cancer cells,

while dual-ligands bind to a good number of receptors on healthy cells. At pKa

values above 5, the plot shows that base-polyelectrolytes collapse at low pH values

(cancer cell environment) prohibiting the dual-ligands from reaching the cell surface

and stretch at higher pH values (Healthy cell environment) allowing more ligand re-

ceptor binding behavior. This unexpected effect is influenced by the change on the

chemical potential values that are effected strongly by the pKa values, the local pH

as well as the separation distance between the micelle and the cell.

In the case of healthy cells with 10% less receptors on their surface than cancer

cells, the average volume fraction of bound dual-ligands deceases dramatically. Al-

though the dual-ligand can stretch at the healthy cell environment, the density of

the targeted receptor on the healthy cell surface is significant to control the ligand-

receptor binding. Thus, the dual-ligand technique seems to improve the selectivity,

if the density of the targeted receptors is chosen carefully to be much higher in the

cancer cell than in the healthy cell.

The selectivity in both the mono and the dual-ligand techniques can be improved

by limiting the stability of the micelle on the cell with the requirement of having more

than one ligand to bind to the cell. In other words, the binding to one receptor on the

cell shouldn’t be enough to stabilize the micelle against the blood stream. Previously,

we mentioned the importance of the size of the therapeutic micelle in improving the

selectivity 4.2. We calculated the size of the therapeutic micelle depending on the

density of receptors of the targeted cell. Using the dual-ligand technique with a

micelle that has the right therapeutic size should improve both: the selectivity and

the efficiency.

In conclusion, herein we generalize a molecular theory that accounts for steric,

van der Waals, and electrostatic interactions in a biological system to study the dual-

ligand binding protocols. We used a decoupled mean-field approach to improve the
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van der Waals inter-molecular interaction efficiency. Different stimuli in the system

affected the dual-ligand binding, however we found that the system local pH, the

polyelectrolytes pKa values and the chemical potential values are the driving param-

eters in the system. That could be highly related to the way the polyelectrolytes get

ionized in the system. In our system we choose polyelectrolytes that bind to hydrogen

ions to become positively charged. The system behavior could change if in the case

of polybases that dissociate to hydroxide groups and positively charged ions, which

we may consider as a future work. We found that the dual-ligand technique should

improve the binding efficiency and selectivity to cancer cells that have over-expressed

receptors. The technique can be farther improved by using the optimum therapeutic

micellar size.
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Chapter 5

Future Work

Several drugs in existence today are producing the anticipated results on diseased

cell cultures or tissues, however most of these drugs have side effects on other healthy

cells or tissues. It is therefore essential to ensure delivery of the drug directly to the

site of action and the designing of a drug delivery vehicle has become an imperative

topic. The material used to design drug delivery devices must have several properties:

it must be nontoxic, it must be biocompatible so the cell can absorb the drug and

the material has to have an on/off switch that responds to some external stimulus

so that the drug is protected until it reaches the site of action. Several synthesized

polymers can be manipulated to meet the requirements for a specific application. In

the previous two chapters we have covered some of these applications. There are

still abundant designs that can be further explored to improve the targeted drug

delivery devices. In this chapter we will highlight certain polymeric drug delivery

device designs, where their physical behavior can be studied in the future.

5.1 Modeling Micelles with pH-Sensitive Charge-Conversion Poly-

electrolytes

In the previous two models in Chapter 4, we have used pH-sensitive polyelectrolytes as

ligand-complexes. We have studied the effect of the low pH in the cancer environment,

which raises the positive charges on the polybases. This raised charge leads to an

attractive interaction between the micelle and the cancer cell. The Macromolecular

Bioscience journal presented an interesting synthesis of a smart micelle that has
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pH-sensitive charge converting behavior [21]. The synthesized polymers are slightly

negatively charged at neutral or basic pH but become positively charged at low pH.

Such a design reduces the interaction between the micelle and the negatively charged

surface of the healthy cells.

The model of the dual pH-sensitive polyelectrolytes undergoes two different inter-

actions as follows:

• At neutral and basic pH:

AH −−⇀↽−− A− + H+

• At low pH:

B + H+ −−⇀↽−− BH+

The first chemical interaction represents the dissolving of the acid groups along

the polymer chain. The dissociation constant for this interaction is (Ka = [A−][H+]
[AH] ).

The second interaction is identical to the interaction discussed in Chapter 3 and

Chapter 4, where the dissociation constant is (Kb = [BH+]
[B][H+]). Looking at the two

dissociation constants, one can determine the effect of one reaction on the other, and

how these reactions could effect the pH of the surrounding environment. The study of

the competition between the different forces in the system could improve the stability

and the targeted delivery.

5.2 Modeling Microgels that Release Hydrophobic-Hydrophilic Drugs

In Chapter 3 we have discussed the behavior of thermo-responsive polymers. LCST

polymers have been used to control drug release, due to their swilling behavior at

low temperature. Cross-linked gels can be made of thermo-responsive polymers with

LCST around 32◦. The gel swills at this temperature but starts to shrink when it

reaches the higher temperature of the body. This shrinkage behavior allows the drug

to escape from the holes within the cross-linked gel.
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In 2015, the Materials Letters journal published a paper studying the simultaneous

release of aspirin and probucol, as hydrophilic and hydrophobic drugs respectively,

to treat restenosis 1 [31]. This shows that designing microgels that can protect and

control the release of hydrophobic and hydrophilic drugs at the same time is significant

for medical applications. One can design different microgel models to meet specific

desired rates of drug release. A spherical model of hydrophilic and hydrophobic gels

that protect the hydrophobic and the hydrophilic drugs respectively can be used for

different rates of release (see Figure 5.1). In this model, the two layers of LCST gels

shrink at body temperature, which is above the LCST point, allowing the drugs to

leave the gels. Controlling the size of the outer shell gel and the inside spherical gel

has a significant impact on the rate of the drugs’ release..

Figure 5.1: A spherical microgel model to release hydrophilic and hydropho-
bic drugs.

In the case of thermo-degradable cross-linked gels, one can design a layer-by-layer

microgel (see Figure 5.2). The two layers of hydrophilic and hydrophobic gels that

contain the hydrophobic and the hydrophilic drugs respectively, can be protected with

a biocompatible coating material. The coat prevents the drug from being released

1Restenosis is the recurrence of stenosis, a narrowing of a blood vessel, leading to restricted
blood flow [59].
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until it is dissolved in the biological solution. The time for the coat to dissolve can be

regulated through the design. The thickness of the hydrophilic and the hydrophobic

layer-by-layer gel can also be modified to control the release rate of both drugs.

Figure 5.2: A layer-by-layer microgel model to release hydrophilic and hy-
drophobic drugs.

5.3 Calculating The Micelle-Cell Binding Energy That Enhance En-

docytosis

As mentioned earlier, most drugs have side effects on healthy cells. Thus, the ability

of releasing the drug inside the cell through endocytosis is essential for an efficient

treatment. Our goal is to allow the cell to swallow the micelle that is loaded with

the needed drug. To do this, we need to understand the cell’s endocytosis behavior,

including: the molecules that could undergo endocytosis, the size and weight of these

molecules and if there is any kind of binding between the cell and these molecules

before the endocytosis mechanism.
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Understanding the physical interactions between the cell and the loaded micelle is

critical to achieve the desired endocytosis behavior. We need to study all the forces

between the micelle and the cell. Once we compare these forces with the weight and

the binding forces of the proteins that are inserted into the cell through endocytosis,

we can mimic the natural endocytosis behavior of the cell. Figure (5.3) represents

the effect of the strength of the binding energy in increasing the curvature on the cell

that enhance endocytosis.

Figure 5.3: An illustration represents the effect of the binding energy
between the micelle and the cell in increasing the cell Curvature.

Figure 5.4: Using the oil drop model to study the micelle stability.
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5.4 Calculating The Micelle’s Self-Assembly Energy to Diminish Drug

Leakage

For this model we need to study polymers’ self-assembly in a spherical coordinates

system (see Appendix C). In this study, we can use the oil drop model to determine

the force needed to stabilize the micellar shape (see Figure (5.4)). This force should

be determined by the size of the micelle, the density of the micelle, and the density

of the surrounding solution. Thomas Russell and colleagues have published papers in

the use of the oil drop model to study nanoparticles self-assembly [4, 30, 29]. One,

can use these models to design stable micelles at several biological conditions.

122



www.manaraa.com

Bibliography

[1] M Abercrombie and EJ Ambrose. “The surface properties of cancer cells: a
review”. In: Cancer research 22.5 Part 1 (1962), pp. 525–548.

[2] Jooyeon Ahn et al. “Antibody fragment-conjugated polymeric micelles incor-
porating platinum drugs for targeted therapy of pancreatic cancer”. In: Bioma-
terials 39.C (Jan. 2015), pp. 23–30.

[3] Carolina de las Heras Alarc n, Sivanand Pennadam, and Cameron Alexander.
“Stimuli responsive polymers for biomedical applications”. In: Chemical Society
Reviews 34.3 (2005), pp. 276–10.

[4] Alexander Böker et al. “Self-assembly of nanoparticles at interfaces”. In: Soft
Matter 3.10 (2007), pp. 1231–19.

[5] Susan E. Burke and Christopher J. Barrett. “Controlling the physicochemical
properties of weak polyelectrolyte multilayer films through acid/base equilib-
ria”. In: Pure and Applied Chemistry 76 (7-8 Jan. 2009), pp. 1387–1398.

[6] Pranjal Chandra, Hui-Bog Noh, and Yoon-Bo Shim. “Cancer cell detection
based on the interaction between an anticancer drug and cell membrane com-
ponents”. In: Chemical Communications 49.19 (2013), pp. 1900–4.

[7] Guoping Chen, Yoshihiro Ito, and Yukio Imanishi. “Regulation of growth and
adhesion of cultured cells by insulin conjugated with thermoresponsive poly-
mers”. In: Biotechnology and bioengineering 53.3 (1997), pp. 339–344.

[8] Shanta Dhar et al. “Targeted delivery of cisplatin to prostate cancer cells by
aptamer functionalized Pt (IV) prodrug-PLGA– PEG nanoparticles”. In: Pro-
ceedings of the National Academy of Sciences 105.45 (2008), pp. 17356–17361.

[9] Ken A. Dill and Sarina Bromberg. Molecular Driving Forces Statistical Ther-
modynamics in Biology, Chemistry, Physics, and Nanoscience. 2nd. New York:
Garland Science, 2011. isbn: 978-0-8153-4430-8.

123



www.manaraa.com

[10] Izabela Dobrzyńska, Elżbieta Skrzydlewska, and Zbigniew A Figaszewski. “Changes
in Electric Properties of Human Breast Cancer Cells”. In: The Journal of Mem-
brane Biology 246.2 (Nov. 2012), pp. 161–166.

[11] Izabela Dobrzyńska et al. “Characterization of Human Bladder Cell Membrane
During Cancer Transformation”. In: The Journal of Membrane Biology 248.2
(Jan. 2015), pp. 301–307.

[12] C Domb. “Excluded-Volume Effect for Two- and Three-Dimensional Lattice
Models”. In: The Journal of Chemical Physics 38.12 (1963), pp. 2957–8.

[13] Glenn H. Fredrickson. The Equilibrium Theory of Inhomogeneous Polymers.
1st. Oxford: Oxford Science Publication, 2006. isbn: 978-0-19-856729-5.

[14] Igor Y Galaev and Bo Mattiasson. “Smart polymers and what they could do in
biotechnology and medicine”. In: Trends in Biotechnology 17.8 (1999), pp. 335
–340. issn: 0167-7799. doi: http://dx.doi.org/10.1016/S0167-7799(99)
01345-1. url: http://www.sciencedirect.com/science/article/pii/
S0167779999013451.

[15] Igor Y Galaev and Bo Mattiasson. “âĂŸSmartâĂŹ polymers and what they
could do in biotechnology and medicine”. In: Trends in Biotechnology 17.8
(1999), pp. 335 –340. issn: 0167-7799.

[16] Pierre-Gilles de Gennes. Scaling Concepts in Polymer Physics. 1st. Ithaca and
London: Cornell University Press, 1979. isbn: 978-0-8014-1203-5.

[17] Matthew C Hagy, Shihu Wang, and Elena E Dormidontova. “Optimization of
Functionalized Polymer Layers for Specific Targeting of Mobile Receptors on
Cell Surfaces”. In: Langmuir 24.22 (Nov. 2008), pp. 13037–13047.

[18] J A Hickey et al. “Simultaneous Release of a Hydroxy-Methylglutaryl Coen-
zyme A Reductase Inhibitor and a Glycoprotein IIb/IIIa Antagonist from a
Thermoresponsive NiPAAm/NtBAAm Copolymer System”. In: Journal of Bio-
materials and Nanobiotechnology 02.01 (2011), pp. 18–27.

[19] M Hrubý et al. “Thermoresponsive polymers as promising new materials for
local radiotherapy”. In: Applied Radiation and Isotopes 63.4 (2005), pp. 423–
431.

[20] Gang Huang et al. “Self-assembled UCST-Type Micelles as Potential Drug
Carriers for Cancer Therapeutics”. In: Macromolecular Chemistry and Physics
216.9 (Feb. 2015), pp. 1014–1023.

124



www.manaraa.com

[21] Hailong Huang et al. “A Smart Drug Delivery System from Charge-Conversion
Polymer-Drug Conjugate for Enhancing Tumor Therapy and Tunable Drug
Release”. In: Macromolecular Bioscience 14.4 (Apr. 2014), pp. 485–490.

[22] Kang Moo Huh et al. “pH-sensitive polymers for drug delivery”. In: Macro-
molecular Research 20.3 (Mar. 2012), pp. 224–233.

[23] Tomoki Ito, Chikara Yoshida, and Yoshihiko Murakami. “Design of novel sheet-
shaped chitosan hydrogel for wound healing: A hybrid biomaterial consisting of
both PEG-grafted chitosan and crosslinkable polymeric micelles acting as drug
containers”. In: Materials Science & Engineering C 33.7 (Oct. 2013), pp. 3697–
3703.

[24] Tianyue Jiang et al. “Furin-Mediated Sequential Delivery of Anticancer Cy-
tokine and Small-Molecule Drug Shuttled by Graphene”. In: Advanced Materi-
als 27.6 (Dec. 2014), pp. 1021–1028.

[25] Joseph W. KANE and Morton M. STERNHEIM. Physics. 3rd. John Wiley and
Sons, 1988. isbn: 0-471-63845-5.

[26] Yu.A. Kuznetsov. Newton method. Encyclopedia of Mathematics. 2011. url:
http://www.encyclopediaofmath.org/index.php?title=Newton_method&
oldid=12312.

[27] Eun Seong Lee et al. “Super pH-sensitive multifunctional polymeric micelle for
tumor pHe specific TAT exposure and multidrug resistance”. In: Journal of
Controlled Release 129.3 (Aug. 2008), pp. 228–236.

[28] Xi Li et al. “Enhancement of cell recognition in vitro by dual-ligand cancer
targeting gold nanoparticles”. In: Biomaterials 32.10 (2011), pp. 2540–2545.

[29] Yao Lin et al. “Nanoparticle Assembly at Fluid Interfaces: Structure and Dy-
namics”. In: Langmuir 21.1 (Jan. 2005), pp. 191–194.

[30] Yao Lin et al. “Ultrathin Cross-Linked Nanoparticle Membranes”. In: Journal
of the American Chemical Society 125.42 (Oct. 2003), pp. 12690–12691.

[31] Hui Liu and Jie He. “Simultaneous release of hydrophilic and hydrophobic drugs
from modified chitosan nanoparticles”. In: Materials Letters 161.C (Dec. 2015),
pp. 415–418.

[32] Gabriel Longo and I Szleifer. “Ligand-Receptor Interactions in Tethered Poly-
mer Layers”. In: Langmuir 21.24 (Nov. 2005), pp. 11342–11351.

125



www.manaraa.com

[33] Haitao Ma et al. “Nucleic acid aptamers in cancer research, diagnosis and ther-
apy”. In: Chemical Society Reviews (Jan. 2015), pp. 1–17.

[34] D MacDonald et al. “Self-avoiding walks on the simple cubic lattice”. In: Journal
of Physics A: Mathematical and General 33.34 (2000), pp. 5973–5983.

[35] E Martinelli et al. “Anti-epidermal growth factor receptor monoclonal antibod-
ies in cancer therapy”. In: Clinical Experimental Immunology 158.1 (Oct. 2009),
pp. 1–9.

[36] Atsushi Mori et al. “SEMIGRAND CANONICAL MONTE CARLO SIMULA-
TION WITH GIBBS-DUHEM INTEGRATION TECHNIQUE FOR ALLOY
PHASE DIAGRAMS”. In: Mater.Phys.Mech. 6 (2003), pp. 49–57.

[37] R J Nap and I Szleifer. “How to optimize binding of coated nanoparticles:
coupling of physical interactions, molecular organization and chemical state”.
In: Biomaterials Science 1.8 (2013), pp. 814–11.

[38] Norased Nasongkla et al. “Multifunctional Polymeric Micelles as Cancer-Targeted,
MRI-Ultrasensitive Drug Delivery Systems”. In: Nano Letters 6.11 (Nov. 2006),
pp. 2427–2430.

[39] Taiho Noh et al. “Block copolymer micelles conjugated with anti-EGFR anti-
body for targeted delivery of anticancer drug”. In: Journal of Polymer Science
Part A: Polymer Chemistry 46.22 (Nov. 2008), pp. 7321–7331.

[40] Motoi Oishi et al. “Endosomal release and intracellular delivery of anticancer
drugs using pH-sensitive PEGylated nanogels”. In: Journal of Materials Chem-
istry 17.35 (2007), pp. 3720–6.

[41] S M Oversteegen et al. “On the Pressure in Mean-Field Lattice Models”. In:
Langmuir 15.25 (1999), pp. 8609–8617.

[42] Bart R Postmus, Frans A M Leermakers, and Martien A Cohen Stuart. “Self-
Consistent Field Modeling of Adsorption from Polymer/Surfactant Mixtures”.
In: Langmuir 24.13 (2008), pp. 6712–6720.

[43] Marshall N. Rosenbluth and Arianna W. Rosenbluth. “Monte Carlo Calculation
of the Average Extension of Molecular Chains”. In: The Journal of Chemical
Physics 23.2 (1955), pp. 356–5.

[44] Michael Rubinstein and Ralph H. Colby. Polymer Physics. 1st. Oxford: Oxford
University Press, 2003. isbn: 978-0-19-852059-7.

126



www.manaraa.com

[45] Justin M Saul, Ananth V Annapragada, and Ravi V Bellamkonda. “A dual-
ligand approach for enhancing targeting selectivity of therapeutic nanocarriers”.
In: Journal of Controlled Release 114.3 (2006), pp. 277–287.

[46] S M Scheinhardt-Engels, F A M Leermakers, and G J Fleer. “Lattice mean-field
method for stationary polymer diffusion”. In: Physical Review E 68.1 (2003),
pp. 011802–15.

[47] Julian Schwinger et al. Classical Electrodynamics. 1st. Boulder: Westview Press,
1988. isbn: 0-7382-0056-5.

[48] Martien A Cohen Stuart et al. “Emerging applications of stimuli-responsive
polymer materials”. In: Nature Materials 9.2 (Jan. 2010), pp. 101–113.

[49] SUNDIALS. url: https://computation.llnl.gov/casc/sundials/main.
html.

[50] I Szleifer and M A Carignano. “Tethered Polymer Layers”. In: Advances in
Chemical Physics. Hoboken, NJ, USA: John Wiley & Sons, Inc., Jan. 1996,
pp. 165–260.

[51] Igal Szleifer, Eamonn M O’Toole, and Athanassios Z Panagiotopoulos. “Monte
Carlo simulation of the collapse-coil transition in homopolymers”. In: The Jour-
nal of Chemical Physics 97.9 (1992), pp. 6802–8.

[52] M Tagliazucchi, M O de la Cruz, and I Szleifer. “Self-organization of grafted
polyelectrolyte layers via the coupling of chemical equilibrium and physical
interactions”. In: Proceedings of the National Academy of Sciences 107.12 (Mar.
2010), pp. 5300–5305.

[53] Kazuhiro Takara et al. “Size-controlled, dual-ligand modified liposomes that
target the tumor vasculature show promise for use in drug-resistant cancer
therapy”. In: Journal of Controlled Release 162.1 (2012), pp. 225–232.

[54] Ian F. Tannock and Daniela Rotin. “Acid pH in Tumors and Its Potential for
Therapeutic Exploitation1”. In: Cancer Research 49 (1989), pp. 4373–4384.

[55] B TWAITES et al. “Thermoresponsive polymers as gene delivery vectors: Cell
viability, DNA transport and transfection studies”. In: Journal of Controlled
Release 108.2-3 (2005), pp. 472–483.

[56] Mark J Uline, Yitzhak Rabin, and Igal Szleifer. “Effects of the Salt Concen-
tration on Charge Regulation in Tethered Polyacid Monolayers”. In: Langmuir
27.8 (Apr. 2011), pp. 4679–4689.

127



www.manaraa.com

[57] Yuan Wan et al. “Capture, isolation and release of cancer cells with aptamer-
functionalized glass bead array”. In: Lab on a Chip 12.22 (2012), pp. 4693–
10.

[58] Mark AWard and Theoni K Georgiou. “Thermoresponsive Polymers for Biomed-
ical Applications”. In: Polymers 3.4 (2011), pp. 1215–1242.

[59] Wikipedia. Restenosis Wikipedia, The Free Encyclopedia. [Online; accessed 30-
March-2016]. 2016. url: https://en.wikipedia.org/wiki/Restenosis.

128



www.manaraa.com

Appendix A

Calculating the exclude volume parameter

Flory came with a brilliant and simple idea to calculate the excluded volume param-

eter ν. He computed the repulsive energy in the chain due to the interaction between

two neighboring monomers. The repulsive energy per unit volume is giving by:

urep = 1
2(1− 2χ)adc2KBT

Where χ is Flory’s interaction parameter, a is Kuhn length, d is an arbitrary di-

mensionality, and c is the local concentration number of monomers. Flory defined

ν = (1−2χ)ad. This definition indicates that for a good solvent ν should be positive,

for which χ should be less than 1
2 .

Flory used a typical mean field approach; he ignored all correlations between

monomers. Thus he assumed that the average of the local monomer concentration

squared is equal to the average concentration squared [16]. Then he took that to be

equivalent to the internal monomer concentration (cint ∼= N
Rd ).

〈
c2
〉
→ 〈c〉2 = c2

int

Hence, the total repulsive interaction over the total volume Rd is:

urep,tot ∼= νc2
intR

dKBT = ν
N2

Rd
KBT

Also, he includes an elastic energy term:

uels ∼=
R2

Na2KBT
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Then we can write the total repulsive energy as:

βUrep = ν
N2

Rd
+ R2

Na2

By taking the minimum of the repulsive energy and neglecting all numerical coeffi-

cients, we get:

Rd+2 ∼= νN3a2

and from:

R ∼ N ν

that gives us: 
d+ 3→ 3

1→ ν

Hence:

ν = 3
d+ 2 (A.1)

The previous equation gives the expected value for ν one dimensional coordinates,

which is 1, and for higher dimensions it gives a very accurate value.
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Appendix B

Calculating Flory’s interaction parameter

p p

s s
For a polymer solution with ns number of solvent molecules, np number of poly-

mers each having a polymerization number N , the total number of molecules in the

system Ntot = ns + Nnp. We define the volume fraction for each molecular species

as:

φp = Nnp
Ntot

= φ

φs = ns
Ntot

= (1− φ)

The total internal energy in the system is equal the sum of van der Waals interactions

between all molecules in the system.

Uint = Upp + Uss + Usp

Upp = nppεpp

Uss = nssεss

Usp = nspεsp

Where npp, nss and nsp is the number of contacts or interactions between the molecular

species, and εpp, εss and εsp are the corresponding interaction energies. Note that
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each free molecule should have z number possible interactions accept the monomers

that are connected to each other. They should have (z− 2) interactions or at (z− 1)

for the chain-end [9]. Then, from the conservation of number of sites we can write:

(z − 2)Nnp = 2npp + nsp ⇒ npp = 1
2 ((z − 2)Nnp − nsp)

≈ 1
2(zNnp − nsp

)

zns = 2nss + nsp ⇒ nss = 1
2(zns − nsp)

By summing npp and nss, we get:

Upp = 1
2(zNnp − nsp)εpp = z

2Nnpεpp −
1
2nspεpp

Uss = 1
2(zns − nsp)εss = z

2nsεss −
1
2nspεss

Usp = nspεsp

Thus,

Uint = Upp + Uss + Usp

Uint = z

2Nnpεpp −
1
2nspεpp + z

2nsεss −
1
2nspεss + nspεsp

Uint = z

2Nnpεpp + z

2nsεss −
1
2nsp(εpp + εss − 2εsp)

Hence the internal energy per site is given by:

Ūint = z

2φεpp + z

2(1− φ)εss −
1
2
nsp
Ntot

(εpp + εss)− εsp)

To get the right χ parameter the following relation should be correct

nsp = zNnpns
Ntot

Then we can write:

Ūint = z

2φεpp + z

2(1− φ)εss −
z

2φ(1− φ)(εpp + εss − 2εsp)
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Where Flory’s Chi Parameter is defined as:

χ ≡ z

2
(εpp + εss − 2εsp)

KBT
(B.1)
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Appendix C

Mathematical Relations

A. Cartesian Coordinate

For a function f of three-dimensional Cartesian coordinates x, y, and z, we can

write the following:

Gradient of function f

∇f(x, y, z) =
(
∂f

∂x
x̂+ ∂f

∂y
ŷ + ∂f

∂z
ẑ

)

Where x̂, ŷ and ẑ are unit vectors pointing along the coordinate directions.

Divergence of a vector function f

∇ · f(x, y, z) =
(
∂f

∂x
+ ∂f

∂y
+ ∂f

∂z

)

Laplacian operator

∇2f(x, y, z) =
(
∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2

)

Note that in planner homogenous systems the first and the second terms are

neglected and we will end up calculating the last term only.

B. Polar Coordinate

For a function f of three-dimensional Polar coordinates r, θ, and φ, we can write

the following:

Gradient of function f

∇f(r, θ, φ) =
(
∂f

∂r
r̂ + 1

r

∂f

∂θ
θ̂ + 1

r sin θ
∂f

∂φ
φ̂

)
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Where r̂, θ̂ and φ̂ are unit vectors pointing along the coordinate directions.

Divergence of a vector function f

∇ · f(r, θ, φ) =
(

1
r2

∂

∂r
(r2f) + 1

r sin θ
∂

∂θ
(sin θf) + 1

r sin θ
∂f

∂φ

)

Laplacian operator

∇2f(r, θ, φ) =
(

1
r2

∂

∂r

(
r2∂f

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂f

∂θ

)
+ 1
r2 sin2 θ

∂2f

∂φ2

)

In the case of studying a spherical homogenous planner system, we take the deriva-

tive with respect to the change in the radius direction, r, only.

C. CylindricalCoordinate

For a function f of three-dimensional Cylindrical coordinates ρ, φ, and z, we can

write:

Divergence of a vector function f

∇ · f(ρ, φ, z) =
(

1
ρ

∂

∂ρ
(ρf) + 1

ρ

∂f

∂φ
+ ∂f

∂z

)

Laplacian operator

∇2f(ρ, φ, z) =
(

1
ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+ 1
ρ2
∂2f

∂φ2 + ∂2f

∂z2

)

We didn’t consider the spherical and the cylindrical coordinate systems in our

study, but we may consider it in future work.
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Appendix D

Calculating Poisson-Boltzmann equation

A. For a planner surface

Poisson equation:

∂

∂z

(
ε(z) ∂

∂z
ψ(x, y, z)

)
= −ρq(z)

ψ(x, y, z): The electric potential at distance z.

ρ(z): Charge density at distance z.

ε(z): Medium permittivity and it is held to be constant given by the bulk value.

Thus we can rewrite the following:

∇2ψ(x, y, z) = −ρq(z)
ε

In Cartesian coordinates we write:(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
ψ(x, y, z) = −ρq(z)

ε

If the electric potential is homogeneous on the x and y dimensions, and changes

only at the Z-direction, we can write:

ε

(
∂2

∂z2ψ(z)
)

= −ρq(z)

Using Boltzmann distribution equation we can write the charge density as:

ρq(z) =
∑
i

ZieCi

136



www.manaraa.com

zi: The charge valance e: The elementary charge Ci: The ion concentration The

sum is over all ion species in the system i, which follow Boltzmann distribution.

The ions concentrations is given by:

Ci(z) = C∞e
−βzieψ(z)

C∞: is the bulk concentration. The resulting Poisson-Boltzmann equation is:

ε
∂2ψ(z)
∂z2 = −

∑
i

ZieC∞ exp[−βZieψ(z)]

Z+ = +Z Z− = −Z

∂2ψ(z)
∂z2 = −eZC∞

ε
(exp[−βZeψ(z)]− exp[−βZeψ(z)])

This equation can be expressed in terms of hyperbolic sine function, sinh(x) =
ex−e−x

2
∂2ψ(z)
∂z2 = 2eZC∞

ε
sinh(βZeψ(z))

For very small potential βZeψ(z) � 1, which is our case, sinh βZeψ(z) ≈

βZeψ(z)
∂2ψ(z)
∂z2 = 2eZCinfty

ε
βZeε(z) = κ2ψ(z)

Where, this equation is called Poisson-Boltzmann (PB) or Debye-Huckle equation,

and κ2 = 2βe2Z2Cinfty

ε
, and 1

κ
= λD is called Debye length. The solution for PB

equation is as follows:

ψ(z) = Ae−z/λD +Bez/λD

Boundary conditions:

ψ(0) = ψ0 ψ(∞)→ 0

then,

ψ(z) = ψ0e
−z/λD

To find ψ0, we do the following:

∇ψ(z) = −E(z) = −σq
ε
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By differentiating ∇ψ(z) = −κψ0e
−κz, and using the boundary conditions, we

can calculate the constant ψ0:

ψ0 = σq
κε

= σq
ε
λD

The Analytical Solution

ψ(z) = σqλD
ε

exp(− z

λD
) (D.1)

B. For a spherical surface

Poisson equation:

∂

∂r

(
ε(r) ∂

∂z
ψ(r, θ, φ)

)
= −ρq(r)

ψ(r): The electric potential at distance r.

ρq(r): Charge density at distance r.

ε(r): Medium permittivity and it is held to be constant given by the bulk value.

Thus we can rewrite the following:

∇2ψ(r, θ, φ) = −ρq(r)
ε

for spherical coordinates we can write:(
1
r2

∂

∂r
r2 ∂

∂r
+ 1
r2 sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1
r2 sin2 θ

∂2

∂φ2

)
ψ(r, θ, φ) = −ρq(r)

ε

If the electric potential is homogeneous on the polar and azimuthal angles (θ, φ),

and changes only at the r-direction, one can write the following:

1
r

(
∂2

∂r2 [rψ(r)]
)

= −ρq(r)
ε

Using Boltzmann distribution equation, we can write the charge density as:

ρq(r) =
∑
i

ZieCi
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Zi: The charge valance.

e: The elementary charge.

Ci: The ion concentration.

The sum is over all ion species in the system i, which follow Boltzmann distribu-

tion. The ions concentrations is given by:

Ci(r) = C∞e
−βZieψ(r)

C∞: is the bulk concentration.

The resulting Poisson-Boltzmann equation is:

1
r

(
∂2

∂r2 [rψ(r)]
)

= −1
ε

∑
i

ZieC∞e
−βZieψ(r)

Z+ = +Z Z− = −Z

∂2

∂r2 [rψ(r)] = −eZC∞
ε

r (exp[−βZeψ(r)]− exp[−βZeψ(r)])

Similar to the planner surface case, this equation can be expressed in terms of

hyperbolic sine function.

∂2

∂r2 [rψ(r)] = frac2eZC∞εr sinh (βZeψ(r)])

For a very small potential βZeψ(r)� 1, we can write:

∂2

∂r2 [rψ(r)] = frac2eZC∞εβZe[rψ(r)] = κ2[rψ(r)]

where, this equation is called Poisson-Boltzmann (PB) or Debye-Huckle equation,

1/κ = λD is Debye length.

The solution for PB equation is as follows:

rψ(r) = Ae−r/λD +Ber/λD

The boundary conditions:

ψ(R) = ψ0 ψ(∞)→ 0
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Then,

ψ(r) = ψ0
e−r/λD

r

To find ψ0 we use the following relations:

∇ψ(r) = −E(r)

E(R) = 1
4πε

Q

R2

By differentiating the following;

∇ψ(r) = −ψ0

λD

e−r/λD

r
− ψ0

e−r/λD

r2 = −ψ0
e−r/λD

r

( 1
λD

+ 1
r

)

Using the boundary conditions, we can calculate the constant ψ0:

ψ0 = 1
4πε

Q

e−R/λD

 λD
R + λD

= QeR/λD

4πε
(
1 + R

λD

)


The Analytical Solution

ψ(r) = QeR/λD

4πε
(
1 + R

λD

) e−r/λD

r
(D.2)
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Appendix E

Calculating The Volume of Water Molecule

(H2O) and Sodium Chloride Molecule (NaCl)

• The Volume of H2O Molecule:

The density of H2O=1 g/cm3

The molar mass of H2O=18.01528 g/mol

(18.01528 g/mol)
Na

= (18.01528 g/mol)
(6.02× 1023 atom/mol) = 2.9925× 10−23 g/atom

(2.9925× 10−23 g/atom)÷ 1 g/cm3 = 2.9925× 10−23 cm3/atom

(2.9925× 10−23 cm3/atom)× 1021 = 0.029925 nm3

Volume of water molecule = 0.029925 nm3

• The Volume of NaCl Molecule:

The density of NaCl=2.16 g/cm3

The molar mass of NaCl=58.44 g/mol

(58.44 g/mol)
Na

= (58.44 g/mol)
(6.02× 1023 atom/mol) = 9.7× 10−23 g/atom

9.7× 10−23 g/atom÷ 2.16 g/cm3 = 4.49074× 10−23 cm3/atom

(4.49074× 10−23 cm3/atom)× 1021 = 0.0449074 nm3

Volume of (NaCl) salt molecule = 0.0449074 nm3
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• The Volume of NaCl Ions (Na+Cl−):

The physiological density of ionized NaCl (Na+Cl−)=0.1 mol/L

0.1 mol/L×Na = 0.1 mol

1000 cm3 ×
6.02× 1023 atom

mol
= 0.602× 1020 atom/cm3

0.602× 1020 atom/cm3 × 10−21 cm
3

nm3 = 0.602× 10−1 atom/nm3

Salt concentration (Csalt) = 0.0602 atom/nm3

The volume fraction of slat ions in the bulk = Csalt(in atoms/nm3)× volume

of water molecule

φ+,Bulk = φ−,Bulk = 0.0602 atom/(nm3)× 0.03 nm3 = 0.001806

Thus, the water volume fraction in the bulk, φw,Bulk = 1− φ+,Bulk − φ−,Bulk =

1− 2(0.001806) = 0.996388
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Appendix F

Supporting Information for The

Ligand-Receptor Binding Theory

• The Chemical Interactions in The System:

1. B + H+ −−⇀↽−− BH+ with



Kb = [BH+]
[B][H+]−−exp(−β(µ◦BH+ − µ◦B − µ◦H+))

or

Ka = [B][H+]
[BH+] −−exp(−β(µ◦B + µ◦H+ − µ◦BH+))

2. L + R −−⇀↽−− LR with KLR = [LR]
[L][R]−−exp(−β(µ◦LR − µ◦L − µ◦R))

• Calculating The Concentrations of Molecules in The System:

Number of polymer(Np) = Number of Ligands(NL) + Number of Spacers(NS)

Density of all polymer = σp = Np

A
, where (A) is the area of the system

Fraction of ligands (XL) = NL

NL+NS

Fraction of bound ligands (fLR) = [LR]
[LR]+[L] ⇒ [LR] = fLR([LR] + [L])

1. [LT ]
A

= XLσp
1

2. NS

A
= (1−XL)σp

3. [LT ] = [Lu] + [LR]⇒ [Lu] = [LT ]− [LR]
[Lu]
A

= XLσp −XLσpfLR = XLσp(1− fLR)

4. [RT ] = [Ru] + [LR]⇒ [Ru] = [RT ]− [LR]

Using the fraction o bound ligands equation, we can write:

1Notice that (T ) refers to total ans (u) to un-bound molecules
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[LR](1− fLR) = fLR[L]⇒ [LR] = fLR[L]
(1−fLR)

Thus, [Ru]
A

= σR − fLRXLσp(1−fLR)
(1−fLR)

[Ru]
A

= σR − fLRXLσp

• Converting a Continuous System into 1D Cubic Lattice System:

〈φ(z)〉 = Np

A

∑
α P (α)δz(z − zp(α))vp∫

〈φ(z)〉dz = ∑
i〈φ(i)〉∆z

Np

A

∫ ∑
α P (α)δz(z − zp(α))vpdz = Np

A

∑
i

∑
α P (α)np(α, i)vp∆z∑

i〈φ(i)〈∆z = Np

A

∑
i

∑
α P (α)np(α, i)vp∆z

Then, 〈φ(i)〉 = Np

A

∑
α P (α)np(α, i)vp

• Calculating The Probabilities:

We add the incompressibility constraint of the system that is multiplied by

the Lagrange multipliers (π) to the semi-grand canonical ensemble free energy

equation and set that to be equal to zero. Then, we take the derivative of the

free energy with respect to the probability. Below we calculate the probability

for the mono-ligand system:

∂

∂PS(α)

Ω + β
∑
i

π(i)
[(
〈ρs(i)〉+ 〈ρL(i)〉+ 〈ρLR(i)〉

)
vs + ρw(i)vs

+ ρH+(i)vs + ρOH−(i)vs + ρ+(i)vs + ρ−(i)vs + ρRvs − 1
] = 0

where, ρR = (σR − σpXLfLR)nR

∂

∂PS(α)

− [∑
α

σp(1−XL)PS(α)εintra
Nm∑
n=1

Nm∑
m=n+3

δ(r)

+ εinter
2

∑
i

(〈φs(i)〉σp(1−XL)PS(α)ηs(α, i))

+ (〈ηs(i)〉σp(1−XL)PS(α)vS(α, i))
+ σp(1−XL)

∑
α

PS(α) lnPS(α)


+ β
∂

∂PS(α)
∑
i

π(i)σp(1−XL)
∑
α

PS(α)vS(α, i) = 0
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−β

∑
α

σp(1−XL)εintra
Nm∑
n=1

Nm∑
m=n+3

δ(r)

+ εinter
2

∑
i

(〈φs(i)〉
∑
p

(1−XL)ηs(α, i)) + (〈ηs(i)〉
∑
p

(1−XL)vs(α, i))


+ σp(1−XL) lnPS(α) + β
∑
i

π(i)
∑
p

(1−XL)
∑
α

vs(α, i) = 0

Notice that ∑α dPS(α) = 0. Dividing by σp(1−XL) gives us the following:

∑
α

lnPS(α) = −β
∑

α

εintra
Nm∑
n=1

Nm∑
m=n+3

δ(r) + εinter
2

∑
i

(
〈φs(i)〉ηs(α, i)

)

+
(
〈ηs(i)〉vs(α, i)

)− β∑
i

π(i)vs(α, i)

Thus,

PS(α) = 1
qS

exp
− β

∑
α

εintra
Nm∑
n=1

Nm∑
m=n+3

δ(r)

+ εinter
2

∑
i

(
〈φs(i)〉ηs(α, i) + 〈ηs(i)〉vs(α, i)

)− β∑
i

π(i)vs(α, i)


where,

qS =
∑
α

exp
− β

∑
α

εintra
∑

n=1][Nm

Nm∑
m=n+3

δ(r)

+ εinter
2

∑
i

(
〈φs(i)〉ηs(α, i) + 〈ηs(i)〉vs(α, i)

)− β∑
i

π(i)vs(α, i)


Similarly, we calculate the probability of having a ligand complex.

PL(α) = 1
qL

exp
− β

∑
α

εintra
Nm∑
n=1

Nm∑
m=n+3

δ(r)

+ εinter
2

∑
i

(
〈φL(i)〉ηL(α, i) + 〈ηL(i)〉vL(α, i)

)
− β

∑
i

fH+(i)qpnL(α, i)ψ(i)−
∑
i

nL(α, i){
fH+(i)[ln fH+(i) + βµ0

BH+ ] + (1− fH+(i))[ln(1− fH+(i)) + βµ0
B]
}

− β
∑
i

π(i)vL(α, i)
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We minimize the free energy with respect to the fraction of charge to get the

following relation:

β
∑
i

qpψ(i) +
∑
i

{
[ln fH+(i) + βµ0

BH+ ]− [ln(1− fH+(i)) + βµ0
B]
}

= 0

We use the previous relation to get the simplified form of the ligand complex

probability equation (see Equation 4.15).
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